We consider the C1-Virtual Element Method (VEM) for the conforming numerical approximation of some variants of the Cahn-Hilliard equation on polygonal meshes. In particular, we focus on the discretization of the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting problem. We present the numerical approximation and several numerical results to assess the efficacy of the proposed methodology.

$ C^1 $-VEM for some variants of the Cahn-Hilliard equation: A numerical exploration

Antonietti, Paola F.;Verani, Marco
2022-01-01

Abstract

We consider the C1-Virtual Element Method (VEM) for the conforming numerical approximation of some variants of the Cahn-Hilliard equation on polygonal meshes. In particular, we focus on the discretization of the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting problem. We present the numerical approximation and several numerical results to assess the efficacy of the proposed methodology.
2022
Virtual element method
polytopal meshes
fourth order problems
Cahn-Hilliard equation
impainting
parallel computing
File in questo prodotto:
File Dimensione Formato  
1937-1632_2022_8_1919.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF   Visualizza/Apri
11311-1216699_Antonietti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1216699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact