We consider the C1-Virtual Element Method (VEM) for the conforming numerical approximation of some variants of the Cahn-Hilliard equation on polygonal meshes. In particular, we focus on the discretization of the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting problem. We present the numerical approximation and several numerical results to assess the efficacy of the proposed methodology.
$ C^1 $-VEM for some variants of the Cahn-Hilliard equation: A numerical exploration
Antonietti, Paola F.;Verani, Marco
2022-01-01
Abstract
We consider the C1-Virtual Element Method (VEM) for the conforming numerical approximation of some variants of the Cahn-Hilliard equation on polygonal meshes. In particular, we focus on the discretization of the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting problem. We present the numerical approximation and several numerical results to assess the efficacy of the proposed methodology.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1937-1632_2022_8_1919.pdf
Accesso riservato
Descrizione: articolo principale
:
Publisher’s version
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
11311-1216699_Antonietti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.