Advances in neutron-based radiation therapies such as Boron Neutron Capture Therapy (BNCT) pushes towards the development of new neutron spectrometers, whose key features are to be their practicability, reliability, energy resolution and detection range. The ACSpect is a novel neutron spectrometer based on a two-stages monolithic silicon telescope detector coupled to an organic scintillator working as an active neutron converter. This paper reports the latest developments of the ACSpect and the results of the measurements of an accelerator-based neutron beam moderated by AlF3. The AlF3 is a moderator material optimised to obtain an epithermal neutron beam for accelerator-based BNCT of deep seated tumours. The experiments carried out are the first neutron spectrometry of a neutron beam moderated by AlF3. The performances of the ACSpect have been compared against Monte Carlo simulations, literature data and the gold-standard neutron spectrometer DIAMON. While the agreement between experiments and simulations allowed to validate the Monte Carlo model used to simulate the new moderator material, the agreement between literature data, ACSpect and DIAMON results confirmed the ACSpect as a compact and relatively easy-to-use high-resolution neutron spectrometer, capable of reliably operating in the energy range 250 keV - 4 MeV.

Development of the ACSpect neutron spectrometer: Technological advance and response against an accelerator-based neutron beam

Pola A.;Bortot D.;Mazzucconi D.;D'Angelo G.;Agosteo S.
2022

Abstract

Advances in neutron-based radiation therapies such as Boron Neutron Capture Therapy (BNCT) pushes towards the development of new neutron spectrometers, whose key features are to be their practicability, reliability, energy resolution and detection range. The ACSpect is a novel neutron spectrometer based on a two-stages monolithic silicon telescope detector coupled to an organic scintillator working as an active neutron converter. This paper reports the latest developments of the ACSpect and the results of the measurements of an accelerator-based neutron beam moderated by AlF3. The AlF3 is a moderator material optimised to obtain an epithermal neutron beam for accelerator-based BNCT of deep seated tumours. The experiments carried out are the first neutron spectrometry of a neutron beam moderated by AlF3. The performances of the ACSpect have been compared against Monte Carlo simulations, literature data and the gold-standard neutron spectrometer DIAMON. While the agreement between experiments and simulations allowed to validate the Monte Carlo model used to simulate the new moderator material, the agreement between literature data, ACSpect and DIAMON results confirmed the ACSpect as a compact and relatively easy-to-use high-resolution neutron spectrometer, capable of reliably operating in the energy range 250 keV - 4 MeV.
RADIATION MEASUREMENTS
Boron neutron capture therapy
High resolution neutron spectrometry
Neutron spectrometer
Silicon detector
File in questo prodotto:
File Dimensione Formato  
ACSpect_Parisi_2022.pdf

Accesso riservato

: Publisher’s version
Dimensione 6.14 MB
Formato Adobe PDF
6.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1215959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact