We analyze the stability properties of a linear thermoelastic Timoshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear force and the bending moment. Under either the mixed Dirichlet-Neumann or else the full Dirichlet boundary conditions, we show that the associated solution semigroup in the history space framework of Dafermos is exponentially stable independently of the values of the structural parameters of the model.

Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling

Dell'Oro, Filippo;
2022

Abstract

We analyze the stability properties of a linear thermoelastic Timoshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear force and the bending moment. Under either the mixed Dirichlet-Neumann or else the full Dirichlet boundary conditions, we show that the associated solution semigroup in the history space framework of Dafermos is exponentially stable independently of the values of the structural parameters of the model.
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S
Timoshenko system
Gurtin-Pipkin law
thermal coupling
exponential stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1215897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact