We analyze the stability properties of a linear thermoelastic Timoshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear force and the bending moment. Under either the mixed Dirichlet-Neumann or else the full Dirichlet boundary conditions, we show that the associated solution semigroup in the history space framework of Dafermos is exponentially stable independently of the values of the structural parameters of the model.
Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling
Dell'Oro, Filippo;
2022-01-01
Abstract
We analyze the stability properties of a linear thermoelastic Timoshenko-Gurtin-Pipkin system with thermal coupling acting on both the shear force and the bending moment. Under either the mixed Dirichlet-Neumann or else the full Dirichlet boundary conditions, we show that the associated solution semigroup in the history space framework of Dafermos is exponentially stable independently of the values of the structural parameters of the model.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
11311-1215897_Dell_Oro.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
223.74 kB
Formato
Adobe PDF
|
223.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.