Objectives: This study aimed to evaluate the progression of electrophysiological phenomena in a cohort of patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PsAF). Background: Electrical remodeling has been conjectured to determine atrial fibrillation (AF) progression. Methods: High-density electroanatomic maps during sinus rhythm of 20 patients with AF (10 PAF, 10 PsAF) were compared with 5 healthy control subjects (subjects undergoing ablation of a left-sided accessory pathway). A computational postprocessing of electroanatomic maps was performed to identify specific electrophysiological phenomena: slow conductions corridors, defined as discrete areas of conduction velocity <50 cm/s, and pivot points, defined as sites showing high wave-front curvature documented by a curl module >2.5 1/s. Results: A progressive decrease of mean conduction velocity was recorded across the groups (111.6 ± 55.5 cm/s control subjects, 97.1 ± 56.3 cm/s PAF, and 84.7 ± 55.7 cm/s PsAF). The number and density of slow conduction corridors increase in parallel with the progression of AF (8.6 ± 2.2 control subjects, 13.3 ± 3.2 PAF, and 20.5 ± 4.5 PsAF). In PsAF the atrial substrate is characterized by a higher curvature of wave-front propagation (0.86 ± 0.71 1/s PsAF vs 0.74 ± 0.63 1/s PAF; P = 0.003) and higher number of pivot points (25.1 ± 13.8 PsAF vs 9.5 ± 6.7 PAF; P < 0.0001). Slow conductions: corridors were mostly associated with pivot sites tending to cluster around pulmonary veins antra. Conclusions: The electrical remodeling hinges mainly on corridors of slow conduction and higher curvature of wave-front propagation. Pivot points associated to SC corridors may be the major determinants for functional localized re-entrant circuits creating the substrate for maintenance of AF.

Slow Conduction Corridors and Pivot Sites Characterize the Electrical Remodeling in Atrial Fibrillation

Frontera A.;Pagani S.;Manzoni A.;Dede' L.;Quarteroni A.;
2022-01-01

Abstract

Objectives: This study aimed to evaluate the progression of electrophysiological phenomena in a cohort of patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PsAF). Background: Electrical remodeling has been conjectured to determine atrial fibrillation (AF) progression. Methods: High-density electroanatomic maps during sinus rhythm of 20 patients with AF (10 PAF, 10 PsAF) were compared with 5 healthy control subjects (subjects undergoing ablation of a left-sided accessory pathway). A computational postprocessing of electroanatomic maps was performed to identify specific electrophysiological phenomena: slow conductions corridors, defined as discrete areas of conduction velocity <50 cm/s, and pivot points, defined as sites showing high wave-front curvature documented by a curl module >2.5 1/s. Results: A progressive decrease of mean conduction velocity was recorded across the groups (111.6 ± 55.5 cm/s control subjects, 97.1 ± 56.3 cm/s PAF, and 84.7 ± 55.7 cm/s PsAF). The number and density of slow conduction corridors increase in parallel with the progression of AF (8.6 ± 2.2 control subjects, 13.3 ± 3.2 PAF, and 20.5 ± 4.5 PsAF). In PsAF the atrial substrate is characterized by a higher curvature of wave-front propagation (0.86 ± 0.71 1/s PsAF vs 0.74 ± 0.63 1/s PAF; P = 0.003) and higher number of pivot points (25.1 ± 13.8 PsAF vs 9.5 ± 6.7 PAF; P < 0.0001). Slow conductions: corridors were mostly associated with pivot sites tending to cluster around pulmonary veins antra. Conclusions: The electrical remodeling hinges mainly on corridors of slow conduction and higher curvature of wave-front propagation. Pivot points associated to SC corridors may be the major determinants for functional localized re-entrant circuits creating the substrate for maintenance of AF.
2022
atrial fibrillation
electrical remodeling
pivot points
slow conduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1215773
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact