This paper describes a method for metric recording based on spherical images, which are rectified to document planar surfaces. The proposed method is a multistep workflow in which multiple rectilinear images are (i) extracted from a single spherical projection and (ii) used to recover metric properties. The workflow is suitable for documenting buildings with small and narrow rooms, i.e., documentation projects where the acquisition of 360 images is faster than the traditional acquisition of several photographs. Two different rectification procedures were integrated into the current implementation: (i) an analytical method based on control points and (ii) a geometric procedure based on two sets of parallel lines. Constraints based on line parallelism can be coupled with the focal length of the rectified image to estimate the rectifying transformation. The calculation of the focal length does not require specific calibrations projects. It can be derived from the spherical image used during the documentation project, obtaining a rectified image with just an overall scale ambiguity. Examples and accuracy evaluation are illustrated and discussed to show the pros and cons of the proposed method.

Metric Rectification of Spherical Images

Barazzetti L.
2022-01-01

Abstract

This paper describes a method for metric recording based on spherical images, which are rectified to document planar surfaces. The proposed method is a multistep workflow in which multiple rectilinear images are (i) extracted from a single spherical projection and (ii) used to recover metric properties. The workflow is suitable for documenting buildings with small and narrow rooms, i.e., documentation projects where the acquisition of 360 images is faster than the traditional acquisition of several photographs. Two different rectification procedures were integrated into the current implementation: (i) an analytical method based on control points and (ii) a geometric procedure based on two sets of parallel lines. Constraints based on line parallelism can be coupled with the focal length of the rectified image to estimate the rectifying transformation. The calculation of the focal length does not require specific calibrations projects. It can be derived from the spherical image used during the documentation project, obtaining a rectified image with just an overall scale ambiguity. Examples and accuracy evaluation are illustrated and discussed to show the pros and cons of the proposed method.
2022
360

image
digital recording
homography
rectification
spherical cameras
File in questo prodotto:
File Dimensione Formato  
ijgi-11-00248.pdf

accesso aperto

: Publisher’s version
Dimensione 12.4 MB
Formato Adobe PDF
12.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1214436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact