In 2021, Marco Besier and the first author introduced the concept of rationalizability of square roots to simplify arguments of Feynman integrals. In this work, we generalize the definition of rationalizability to field extensions. We then show that the rationalizability of a set of quadratic field extensions is equivalent to the rationalizability of the compositum of the field extensions, providing a new strategy to prove rationalizability of sets of square roots of polynomials.

Rationalizability of field extensions with a view towards Feynman integrals

D. Festi;A. Hochenegger
2022-01-01

Abstract

In 2021, Marco Besier and the first author introduced the concept of rationalizability of square roots to simplify arguments of Feynman integrals. In this work, we generalize the definition of rationalizability to field extensions. We then show that the rationalizability of a set of quadratic field extensions is equivalent to the rationalizability of the compositum of the field extensions, providing a new strategy to prove rationalizability of sets of square roots of polynomials.
2022
File in questo prodotto:
File Dimensione Formato  
15-rationalizability.pdf

Accesso riservato

: Publisher’s version
Dimensione 303.73 kB
Formato Adobe PDF
303.73 kB Adobe PDF   Visualizza/Apri
11311-1214243_Hochenegger.pdf

Open Access dal 02/08/2024

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 178.33 kB
Formato Adobe PDF
178.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1214243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact