Special point defects in semiconductors have been envisioned as suitable components for quantum-information technology. The identification of new deep centers in silicon that can be easily activated and controlled is a main target of the research in the field. Vacancy-related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy-related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single-ion implantation, producing Ge-vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon-based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi-localized and delocalized many-body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub-threshold transport across the transistor. The combination of the model with the single-ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.

Position-Controlled Functionalization of Vacancies in Silicon by Single-Ion Implanted Germanium Atoms

Ferrari G.;Prati E.
2021-01-01

Abstract

Special point defects in semiconductors have been envisioned as suitable components for quantum-information technology. The identification of new deep centers in silicon that can be easily activated and controlled is a main target of the research in the field. Vacancy-related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy-related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single-ion implantation, producing Ge-vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon-based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi-localized and delocalized many-body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub-threshold transport across the transistor. The combination of the model with the single-ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.
2021
Ge-vacancy complex
Hubbard model
point defects
quantum transport
single-ion implantation
File in questo prodotto:
File Dimensione Formato  
2102.01390-preprint.pdf

accesso aperto

Descrizione: main
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1212905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact