The fate of ongoing infectious disease outbreaks is predicted through reproduction numbers, defining the long-term establishment of the infection, and epidemicity indices, tackling the reactivity of the infectious pool to new contagions. Prognostic metrics of unfolding outbreaks are of particular importance when designing adaptive emergency interventions facing realtime assimilation of epidemiological evidence. Our aim here is twofold. First, we propose a novel form of the epidemicity index for the characterization of cholera epidemics in spatial models of disease spread. Second, we examine in hindsight the survey of infections, treatments and containment measures carried out for the now extinct 2010-2019 Haiti cholera outbreak, to suggest that magnitude and timing of non-pharmaceutical and vaccination interventions imply epidemiological responses recapped by the evolution of epidemicity indices. Achieving negative epidemicity greatly accelerates fading of infections and thus proves a worthwhile target of containment measures. We also show that, in our model, effective reproduction numbers and epidemicity indices are explicitly related. Therefore, providing an upper bound to the effective reproduction number (significantly lower than the unit threshold) warrants negative epidemicity and, in turn, a rapidly fading outbreak preventing coalescence of sparse local sub-threshold flare-ups.

Epidemicity of cholera spread and the fate of infection control measures

Mari L.;Gatto M.;
2022-01-01

Abstract

The fate of ongoing infectious disease outbreaks is predicted through reproduction numbers, defining the long-term establishment of the infection, and epidemicity indices, tackling the reactivity of the infectious pool to new contagions. Prognostic metrics of unfolding outbreaks are of particular importance when designing adaptive emergency interventions facing realtime assimilation of epidemiological evidence. Our aim here is twofold. First, we propose a novel form of the epidemicity index for the characterization of cholera epidemics in spatial models of disease spread. Second, we examine in hindsight the survey of infections, treatments and containment measures carried out for the now extinct 2010-2019 Haiti cholera outbreak, to suggest that magnitude and timing of non-pharmaceutical and vaccination interventions imply epidemiological responses recapped by the evolution of epidemicity indices. Achieving negative epidemicity greatly accelerates fading of infections and thus proves a worthwhile target of containment measures. We also show that, in our model, effective reproduction numbers and epidemicity indices are explicitly related. Therefore, providing an upper bound to the effective reproduction number (significantly lower than the unit threshold) warrants negative epidemicity and, in turn, a rapidly fading outbreak preventing coalescence of sparse local sub-threshold flare-ups.
2022
effective reproduction numbers
next generation matrix
prognostic indicators
ranking emergency interventions
spatially explicit infection models
Basic Reproduction Number
Disease Outbreaks
Haiti
Humans
Infection Control
Cholera
Epidemics
File in questo prodotto:
File Dimensione Formato  
rsif.2021.0844.pdf

accesso aperto

: Publisher’s version
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1212856
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact