In order to improve the vortex resolution in aerodynamic wakes, a locally normalized vortex feature-based vorticity confinement method is implemented into the multi-block, structured computational fluid dynamics solver (ROSITA). In this method, the second vorticity confinement (VC2) scheme with two well-known vortex feature detection methods (non-dimensional Q criterion, non-dimensional lambda(2) criterion) is employed to counterbalance the truncation error introduced by the numerical discretization of the convective term. The flow field of two benchmark three-dimensional steady vortex-dominated cases, the NACA0015 wing and the Caradonna-Tung hovering rotor, is simulated with the implemented method. The improvements in aerodynamics prediction, vorticity preservation, computational stability, and efficiency are demonstrated. From the numerical results, the vortex feature-based confinement models significantly improve the computational stability, the aerodynamic loads prediction and vorticity preservation capability, especially for the lambda(2)-based VC2 model. In addition, it allows the use of higher confinement parameters on a coarse grid with a relatively higher computational efficiency to obtain better results than those of a finer grid.
Numerical investigations of the vortex feature-based vorticity confinement models for the assessment in three-dimensional vortex-dominated flows
Fu, Jinbin;Yuan, Yi;Vigevano, Luigi
2022-01-01
Abstract
In order to improve the vortex resolution in aerodynamic wakes, a locally normalized vortex feature-based vorticity confinement method is implemented into the multi-block, structured computational fluid dynamics solver (ROSITA). In this method, the second vorticity confinement (VC2) scheme with two well-known vortex feature detection methods (non-dimensional Q criterion, non-dimensional lambda(2) criterion) is employed to counterbalance the truncation error introduced by the numerical discretization of the convective term. The flow field of two benchmark three-dimensional steady vortex-dominated cases, the NACA0015 wing and the Caradonna-Tung hovering rotor, is simulated with the implemented method. The improvements in aerodynamics prediction, vorticity preservation, computational stability, and efficiency are demonstrated. From the numerical results, the vortex feature-based confinement models significantly improve the computational stability, the aerodynamic loads prediction and vorticity preservation capability, especially for the lambda(2)-based VC2 model. In addition, it allows the use of higher confinement parameters on a coarse grid with a relatively higher computational efficiency to obtain better results than those of a finer grid.File | Dimensione | Formato | |
---|---|---|---|
FUJYU_IP_01-22.pdf
accesso aperto
Descrizione: Paper
:
Publisher’s version
Dimensione
7.15 MB
Formato
Adobe PDF
|
7.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.