The presence of open holes changes the behaviour of composite laminates when subjected to mechanical loads creating critical zones with a high probability of interlaminar and intralaminar damage initiation. While open holes in composite laminates are a requirement in many situations such as assembly needs, wiring, and maintenance access, their influence on the impact response of composite laminates is still poorly understood. In this paper, a numerical study was performed on Carbon Fibre Reinforced Polymer (CFRP) composite laminates with open holes subjected to low velocity impacts. The influence of the distance between open holes to impact origin, hole diameter, and the number of open holes on mechanical response and failure was studied using a FE model based on the inter-fibre failure criterion of Cuntze to account for the progressive intralaminar failure. The interlaminar failure was considered by using zero thickness cohesive elements based on the cohesive zone model. The results showed that i) open holes change the shape and size of the damage caused by low velocity impact and ii) that the presence of an open hole close to the impact origin in-plane spread of damage is stopped resulting in more severe damage and a smaller projected damage area compared to the control specimen. In addition, the presence of open holes in most cases did not change the locality of the low velocity impact but rather changed the severity of the damage in the local impact zone.
Numerical Investigation of the Effect of Open Holes on the Impact Response of CFRP Laminates
Rezasefat Balasbaneh, M.;Giglio, M.;Manes, A.
2022-01-01
Abstract
The presence of open holes changes the behaviour of composite laminates when subjected to mechanical loads creating critical zones with a high probability of interlaminar and intralaminar damage initiation. While open holes in composite laminates are a requirement in many situations such as assembly needs, wiring, and maintenance access, their influence on the impact response of composite laminates is still poorly understood. In this paper, a numerical study was performed on Carbon Fibre Reinforced Polymer (CFRP) composite laminates with open holes subjected to low velocity impacts. The influence of the distance between open holes to impact origin, hole diameter, and the number of open holes on mechanical response and failure was studied using a FE model based on the inter-fibre failure criterion of Cuntze to account for the progressive intralaminar failure. The interlaminar failure was considered by using zero thickness cohesive elements based on the cohesive zone model. The results showed that i) open holes change the shape and size of the damage caused by low velocity impact and ii) that the presence of an open hole close to the impact origin in-plane spread of damage is stopped resulting in more severe damage and a smaller projected damage area compared to the control specimen. In addition, the presence of open holes in most cases did not change the locality of the low velocity impact but rather changed the severity of the damage in the local impact zone.File | Dimensione | Formato | |
---|---|---|---|
Rezasefat2022_Article_NumericalInvestigationOfTheEff.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.86 MB
Formato
Adobe PDF
|
3.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.