This work proposes a novel approach to the calibration of regionalized regression models, with particular reference to ground-motion models (GMMs), which are key for probabilistic seismic hazard analysis and earthquake engineering applications. A novel methodology, named multi-source geographically-weighted regression (MS-GWR), is developed, allowing one to (i) estimate regionalized regression models depending on multiple sources of non-stationarity (such as site- and event-dependent non-stationarities in GMMs), and (ii) make inference on the significance and stationarity of the regression coefficients. Unlike previous approaches to the problem, the proposed framework is non-parametric – in the sense of the distribution of the errors – the inference being based on a permutation scheme. MS-GWR is here used to calibrate a new regionalized ground-motion model for predicting peak ground acceleration in Italy, based on a large scale database of waveforms and metadata made available by the Italian Institute for Geophysics and Vulcanology (INGV).

Multi-source geographically weighted regression for regionalized ground-motion models

Luca Caramenti;Alessandra Menafoglio;
2022-01-01

Abstract

This work proposes a novel approach to the calibration of regionalized regression models, with particular reference to ground-motion models (GMMs), which are key for probabilistic seismic hazard analysis and earthquake engineering applications. A novel methodology, named multi-source geographically-weighted regression (MS-GWR), is developed, allowing one to (i) estimate regionalized regression models depending on multiple sources of non-stationarity (such as site- and event-dependent non-stationarities in GMMs), and (ii) make inference on the significance and stationarity of the regression coefficients. Unlike previous approaches to the problem, the proposed framework is non-parametric – in the sense of the distribution of the errors – the inference being based on a permutation scheme. MS-GWR is here used to calibrate a new regionalized ground-motion model for predicting peak ground acceleration in Italy, based on a large scale database of waveforms and metadata made available by the Italian Institute for Geophysics and Vulcanology (INGV).
2022
Geographically-weighted regression; Ground motion models; Peak-ground acceleration; Seismic hazard analysis
File in questo prodotto:
File Dimensione Formato  
67-2020.pdf

accesso aperto

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1209163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact