Research into the nature and structure of ‘Dark Webs’ such as Tor has largely focused upon manually labelling a series of crawled sites against a series of categories, sometimes using these labels as a training corpus for subsequent automated crawls. Such an approach is adequate for establishing broad taxonomies, but is of limited value for specialised tasks within the field of law enforcement. Contrastingly, existing research into illicit behaviour online has tended to focus upon particular crime types such as terrorism. A gap exists between taxonomies capable of holistic representation and those capable of detailing criminal behaviour. The absence of such a taxonomy limits interoperability between agencies, curtailing development of standardised classification tools. We introduce the Tor-use Motivation Model (TMM), a two-dimensional classification methodology specifically designed for use within a law enforcement context. The TMM achieves greater levels of granularity by explicitly distinguishing site content from motivation, providing a richer labelling schema without introducing inefficient complexity or reliance upon overly broad categories of relevance. We demonstrate this flexibility and robustness through direct examples, showing the TMM's ability to distinguish a range of unethical and illegal behaviour without bloating the model with unnecessary detail. The authors of this paper received permission from the Australian government to conduct an unrestricted crawl of Tor for research purposes, including the gathering and analysis of illegal materials such as child pornography. The crawl gathered 232,792 pages from 7651 Tor virtual domains, resulting in the collation of a wide spectrum of materials, from illicit to downright banal. Existing conceptual models and their labelling schemas were tested against a small sample of gathered data, and were observed to be either overly prescriptive or vague for law enforcement purposes - particularly when used for prioritising sites of interest for further investigation. In this paper we deploy the TMM by manually labelling a corpus of over 4000 unique Tor pages. We found a network impacted (but not dominated) by illicit commerce and money laundering, but almost completely devoid of violence and extremism. In short, criminality on this ‘dark web’ is based more upon greed and desire, rather than any particular political motivations.

Criminal motivation on the dark web: A categorisation model for law enforcement

Carman M.
2018

Abstract

Research into the nature and structure of ‘Dark Webs’ such as Tor has largely focused upon manually labelling a series of crawled sites against a series of categories, sometimes using these labels as a training corpus for subsequent automated crawls. Such an approach is adequate for establishing broad taxonomies, but is of limited value for specialised tasks within the field of law enforcement. Contrastingly, existing research into illicit behaviour online has tended to focus upon particular crime types such as terrorism. A gap exists between taxonomies capable of holistic representation and those capable of detailing criminal behaviour. The absence of such a taxonomy limits interoperability between agencies, curtailing development of standardised classification tools. We introduce the Tor-use Motivation Model (TMM), a two-dimensional classification methodology specifically designed for use within a law enforcement context. The TMM achieves greater levels of granularity by explicitly distinguishing site content from motivation, providing a richer labelling schema without introducing inefficient complexity or reliance upon overly broad categories of relevance. We demonstrate this flexibility and robustness through direct examples, showing the TMM's ability to distinguish a range of unethical and illegal behaviour without bloating the model with unnecessary detail. The authors of this paper received permission from the Australian government to conduct an unrestricted crawl of Tor for research purposes, including the gathering and analysis of illegal materials such as child pornography. The crawl gathered 232,792 pages from 7651 Tor virtual domains, resulting in the collation of a wide spectrum of materials, from illicit to downright banal. Existing conceptual models and their labelling schemas were tested against a small sample of gathered data, and were observed to be either overly prescriptive or vague for law enforcement purposes - particularly when used for prioritising sites of interest for further investigation. In this paper we deploy the TMM by manually labelling a corpus of over 4000 unique Tor pages. We found a network impacted (but not dominated) by illicit commerce and money laundering, but almost completely devoid of violence and extremism. In short, criminality on this ‘dark web’ is based more upon greed and desire, rather than any particular political motivations.
Child pornography
Computer forensics
Conceptual models
Dark web
Focused crawls
Machine learning
Tor motivation model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact