Advancements in imaging techniques are key forces of progress in neurosurgery. The importance of accurate visualization of intraoperative anatomy cannot be overemphasized and is commonly delivered through traditional neuronavigation. Augmented Reality (AR) technology has been tested and applied widely in various neurosurgical subspecialties in intraoperative, clinical use and shows promise for the future. This systematic review of the literature explores the ways in which AR technology has been successfully brought into the operating room (OR) and incorporated into clinical practice. A comprehensive literature search was performed in the following databases from inception-April 2020: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library. Studies retrieved were then screened for eligibility against predefined inclusion/exclusion criteria. A total of 54 articles were included in this systematic review. The studies were sub- grouped into brain and spine subspecialties and analyzed for their incorporation of AR in the neurosurgical clinical setting. AR technology has the potential to greatly enhance intraoperative visualization and guidance in neurosurgery beyond the traditional neuronavigation systems. However, there are several key challenges to scaling the use of this technology and bringing it into standard operative practice including accurate and efficient brain segmentation of magnetic resonance imaging (MRI) scans, accounting for brain shift, reducing coregistration errors, and improving the AR device hardware. There is also an exciting potential for future work combining AR with multimodal imaging techniques and artificial intelligence to further enhance its impact in neurosurgery.

Applications of augmented reality in the neurosurgical operating room: A systematic review of the literature

Palumbo M. C.;Redaelli A.;
2021-01-01

Abstract

Advancements in imaging techniques are key forces of progress in neurosurgery. The importance of accurate visualization of intraoperative anatomy cannot be overemphasized and is commonly delivered through traditional neuronavigation. Augmented Reality (AR) technology has been tested and applied widely in various neurosurgical subspecialties in intraoperative, clinical use and shows promise for the future. This systematic review of the literature explores the ways in which AR technology has been successfully brought into the operating room (OR) and incorporated into clinical practice. A comprehensive literature search was performed in the following databases from inception-April 2020: Ovid MEDLINE, Ovid EMBASE, and The Cochrane Library. Studies retrieved were then screened for eligibility against predefined inclusion/exclusion criteria. A total of 54 articles were included in this systematic review. The studies were sub- grouped into brain and spine subspecialties and analyzed for their incorporation of AR in the neurosurgical clinical setting. AR technology has the potential to greatly enhance intraoperative visualization and guidance in neurosurgery beyond the traditional neuronavigation systems. However, there are several key challenges to scaling the use of this technology and bringing it into standard operative practice including accurate and efficient brain segmentation of magnetic resonance imaging (MRI) scans, accounting for brain shift, reducing coregistration errors, and improving the AR device hardware. There is also an exciting potential for future work combining AR with multimodal imaging techniques and artificial intelligence to further enhance its impact in neurosurgery.
2021
Augmented reality
Imaging
Mixed reality
Technology
Artificial Intelligence
Humans
Neuronavigation
Neurosurgical Procedures
Operating Rooms
Augmented Reality
File in questo prodotto:
File Dimensione Formato  
Chidambaram et al 2021 AR in Neurosurgical Operating Room.pdf

Accesso riservato

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 19
social impact