Simple and direct prototyping methods are ideal for large-scale delivery of cognitive photonic hardware. Here, we choose ultrafast laser writing as a direct fabrication technique to later demonstrate all-optical synaptic-like performance along the laser-written waveguides in a chalcogenide glass. Neuronal communication protocols, such as excitatory and inhibitory responses, temporal summations, and spike-timing-dependent plasticity, are shown in the glass chip. This work manifests the potential for large-scale delivery of fully integrated photonic chips based on cognitive principles by single-step fabrication procedures.

Photonic implementation of artificial synapses in ultrafast laser inscribed waveguides in chalcogenide glass

Sotillo B.;Ramponi R.;
2021

Abstract

Simple and direct prototyping methods are ideal for large-scale delivery of cognitive photonic hardware. Here, we choose ultrafast laser writing as a direct fabrication technique to later demonstrate all-optical synaptic-like performance along the laser-written waveguides in a chalcogenide glass. Neuronal communication protocols, such as excitatory and inhibitory responses, temporal summations, and spike-timing-dependent plasticity, are shown in the glass chip. This work manifests the potential for large-scale delivery of fully integrated photonic chips based on cognitive principles by single-step fabrication procedures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact