Diffuse correlations spectroscopy (DCS) is a non-invasive optical technique that, studying the speckle intensity fluctuations of light diffused through a biological tissue, measures its microvascular blood flow. Typically, a long coherence length continuous wave source is used, which limits the possibility to resolve the photon path lengths. Recently, time-domain (TD) DCS was proposed, where a pulsed yet coherent light source is used to resolve the speckle fluctuations at different time-of-flights. Due to the constraint of single-speckle detection and time-resolved acquisition, the technique has a limited throughput which limits depth sensitivity. Here, we demonstrate TD DCS with a superconducting nanowire single-photon detector (SNSPD). The SNSPD has a high quantum efficiency and temporal resolution, while maintaining a very low background and no after-pulsing.We report results on phantom and in vivo experiments, which show the potentiality of the proposed detection system for highly accurate TD DCS experiments.

In-vivo time-domain diffuse correlation spectroscopy with a superconducting nanowire single-photon detector

Colombo L.;Lanka P.;Pifferi A.
2021-01-01

Abstract

Diffuse correlations spectroscopy (DCS) is a non-invasive optical technique that, studying the speckle intensity fluctuations of light diffused through a biological tissue, measures its microvascular blood flow. Typically, a long coherence length continuous wave source is used, which limits the possibility to resolve the photon path lengths. Recently, time-domain (TD) DCS was proposed, where a pulsed yet coherent light source is used to resolve the speckle fluctuations at different time-of-flights. Due to the constraint of single-speckle detection and time-resolved acquisition, the technique has a limited throughput which limits depth sensitivity. Here, we demonstrate TD DCS with a superconducting nanowire single-photon detector (SNSPD). The SNSPD has a high quantum efficiency and temporal resolution, while maintaining a very low background and no after-pulsing.We report results on phantom and in vivo experiments, which show the potentiality of the proposed detection system for highly accurate TD DCS experiments.
2021
DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII
9781510647060
9781510647077
Diffuse correlation spectroscopy
Diffuse Optics
Time-resolved spectroscopy
File in questo prodotto:
File Dimensione Formato  
1192002.pdf

Accesso riservato

Descrizione: file principale
: Publisher’s version
Dimensione 300.35 kB
Formato Adobe PDF
300.35 kB Adobe PDF   Visualizza/Apri
ProceedingIRIS.pdf

accesso aperto

Descrizione: articolo principale
: Publisher’s version
Dimensione 323.12 kB
Formato Adobe PDF
323.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact