Inorganic-organic perovskites semiconductors are becoming increasingly interesting due to their remarkable optical properties, such as a high photoluminescence quantum yield and the possibility to show optical gain in a broad range of wavelengths. We have here simulated microcavities that embed MaPBI3 and 2D hybrid organic-inorganic perovskite semiconductors by sandwiching such active layers between periodic, aperiodic and disordered photonic structures. The complex refractive index dispersions of MaPBI3 and 2D hybrid organic-inorganic perovskite have been recently reported in literature. Thus, we have carefully considered the refractive index dispersion of all the materials employed, such as silicon dioxide, titanium dioxide, and the aforementioned perovskite layers. Moreover, by employing a photochromatic polymer, namely the diarylethene-based polyester pDTE, we have designed a microcavity with light-induced tuning of the cavity modes is possible.

MaPBI3 and 2D hybrid organic-inorganic perovskite based microcavities employing periodic, aperiodic, and disordered photonic structures with light-induced tuning possibility

Bellingeri M.;Scotognella F.
2021

Abstract

Inorganic-organic perovskites semiconductors are becoming increasingly interesting due to their remarkable optical properties, such as a high photoluminescence quantum yield and the possibility to show optical gain in a broad range of wavelengths. We have here simulated microcavities that embed MaPBI3 and 2D hybrid organic-inorganic perovskite semiconductors by sandwiching such active layers between periodic, aperiodic and disordered photonic structures. The complex refractive index dispersions of MaPBI3 and 2D hybrid organic-inorganic perovskite have been recently reported in literature. Thus, we have carefully considered the refractive index dispersion of all the materials employed, such as silicon dioxide, titanium dioxide, and the aforementioned perovskite layers. Moreover, by employing a photochromatic polymer, namely the diarylethene-based polyester pDTE, we have designed a microcavity with light-induced tuning of the cavity modes is possible.
Light-induced tunable structures
Metal halide perovskites
Photochromic polymer
Photonic microcavities
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2590147821000346-main.pdf

accesso aperto

: Publisher’s version
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact