A model for the physical description of water transport through steady-state permeation and dynamic sorption within perfluoro-sulfonic acid (PFSA) membranes has been developed. A broad experimental campaign is conducted on several membranes, belonging to Aquivion class, varying both in thickness and equivalent weight (EW). The experimental data have been used to calibrate and validate water transport model and to find correlations for mass-transfer properties in low-EW PFSA membranes that describe consistently both water vapor permeation and sorption. It has been possible to identify individual contributions to mass transport resistance and to determine the optimal configuration and materials of a full-scale counter-flow membrane humidifier under a set of specific operating conditions.

Characterization and modelling of air humidification in Fuel Cell System for transport sector

Grimaldi, Amedeo;Baricci, Andrea;De Antonellis, Stefano;Casalegno, Andrea
2022-01-01

Abstract

A model for the physical description of water transport through steady-state permeation and dynamic sorption within perfluoro-sulfonic acid (PFSA) membranes has been developed. A broad experimental campaign is conducted on several membranes, belonging to Aquivion class, varying both in thickness and equivalent weight (EW). The experimental data have been used to calibrate and validate water transport model and to find correlations for mass-transfer properties in low-EW PFSA membranes that describe consistently both water vapor permeation and sorption. It has been possible to identify individual contributions to mass transport resistance and to determine the optimal configuration and materials of a full-scale counter-flow membrane humidifier under a set of specific operating conditions.
2022
File in questo prodotto:
File Dimensione Formato  
Grimaldi e3sconf_efc2022_06009.pdf

accesso aperto

Descrizione: Manuscript
: Publisher’s version
Dimensione 242.45 kB
Formato Adobe PDF
242.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact