The analysis of complex heartbeat dynamics has been widely used to characterize heartbeat autonomic control in healthy and pathological conditions. However, underlying physiological correlates of complexity measurements from heart rate variability (HRV) series have not been identified yet. To this extent, we investigated intrinsic irregularity and complexity of cardiac sympathetic and vagal activity time series during postural changes. We exploited our recently proposed HRV-based, time-varying Sympathetic and Parasympathetic Activity Indices (SAI and PAI) and performed Sample Entropy, Fuzzy Entropy, and Distribution Entropy calculations on publicly-available heartbeat series gathered from 10 healthy subjects undergoing resting state and passive slow tilt sessions. Results show significantly higher entropy values during the upright position than resting state in both SAI and PAI series. We conclude that an increase in HRV complexity resulting from postural changes may derive from sympathetic and vagal activities with higher complex dynamics.

Intrinsic Complexity of Sympathetic and Parasympathetic Dynamics from HRV series: A Preliminary Study on Postural Changes

Citi L.;Barbieri R.;
2020-01-01

Abstract

The analysis of complex heartbeat dynamics has been widely used to characterize heartbeat autonomic control in healthy and pathological conditions. However, underlying physiological correlates of complexity measurements from heart rate variability (HRV) series have not been identified yet. To this extent, we investigated intrinsic irregularity and complexity of cardiac sympathetic and vagal activity time series during postural changes. We exploited our recently proposed HRV-based, time-varying Sympathetic and Parasympathetic Activity Indices (SAI and PAI) and performed Sample Entropy, Fuzzy Entropy, and Distribution Entropy calculations on publicly-available heartbeat series gathered from 10 healthy subjects undergoing resting state and passive slow tilt sessions. Results show significantly higher entropy values during the upright position than resting state in both SAI and PAI series. We conclude that an increase in HRV complexity resulting from postural changes may derive from sympathetic and vagal activities with higher complex dynamics.
2020
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
978-1-7281-1990-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact