The Icó-Mandantes Bay is one of the major branches of the Itaparica Reservoir (Sub-Middle São Francisco River, Northeast Brazil) and is the focus of this study. Besides the harmful algae blooms (HAB) and a severe prolonged drought, the bay has a strategic importance-e.g., the eastern channel of the newly built water diversion will withdraw water from it (drinking water). This article presents the implementation of a three-dimensional (3D) numerical model-pioneering for the region-using TELEMAC-3D. The aim was to investigate the 3D flows induced by moderate or extreme winds as well as by heating of the water surface. The findings showed that a windstorm increased the flow velocities (at least one order of magnitude, i.e., up to 10-1-10-2 m/s) without altering significantly the circulation patterns; this occurred substantially for the heating scenario, which had, in contrast, a lower effect on velocities. In terms of the bay's management, the main implications are: (1) the withdrawals for drinking water and irrigation agriculture should stop working during windstorms and at least three days afterwards; (2) a heating of the water surface would likely increase the risk of development of HAB in the shallow areas, so that further assessments with a water quality module are needed to support advanced remediation measures; (3) the 3D model proves to be a necessary tool to identify high risk contamination areas e.g., for installation of new aquaculture systems.

Three-dimensional modeling of wind- and temperature-induced flows in the Icó-Mandantes Bay, Itaparica Reservoir, NE Brazil

Matta E.;
2017-01-01

Abstract

The Icó-Mandantes Bay is one of the major branches of the Itaparica Reservoir (Sub-Middle São Francisco River, Northeast Brazil) and is the focus of this study. Besides the harmful algae blooms (HAB) and a severe prolonged drought, the bay has a strategic importance-e.g., the eastern channel of the newly built water diversion will withdraw water from it (drinking water). This article presents the implementation of a three-dimensional (3D) numerical model-pioneering for the region-using TELEMAC-3D. The aim was to investigate the 3D flows induced by moderate or extreme winds as well as by heating of the water surface. The findings showed that a windstorm increased the flow velocities (at least one order of magnitude, i.e., up to 10-1-10-2 m/s) without altering significantly the circulation patterns; this occurred substantially for the heating scenario, which had, in contrast, a lower effect on velocities. In terms of the bay's management, the main implications are: (1) the withdrawals for drinking water and irrigation agriculture should stop working during windstorms and at least three days afterwards; (2) a heating of the water surface would likely increase the risk of development of HAB in the shallow areas, so that further assessments with a water quality module are needed to support advanced remediation measures; (3) the 3D model proves to be a necessary tool to identify high risk contamination areas e.g., for installation of new aquaculture systems.
2017
Itaparica Reservoir
Semi-arid region
TELEMAC-3D
Temperature
Wind
File in questo prodotto:
File Dimensione Formato  
water-09-00772-v2.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 13.17 MB
Formato Adobe PDF
13.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1208119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact