Extracting patterns and useful information from Natural Language datasets is a challenging task, especially when dealing with data written in a language different from English, like Italian. Machine and Deep Learning, together with Natural Language Processing (NLP) techniques have widely spread and improved lately, providing a plethora of useful methods to address both Supervised and Unsupervised problems on textual information. We propose RECKONition, a NLP-based system for Industrial Accidents at Work Prevention. RECKONition, which is meant to provide Natural Language Understanding, Clustering and Inference, is the result of a joint partnership with the Italian National Institute for Insurance against Accidents at Work (INAIL). The obtained results showed the ability to process textual data written in Italian describing industrial accidents dynamics and consequences.

RECKONition: A NLP-based system for industrial accidents at work prevention

Lenzi E.;Mongelluzzo A.;Roveri M.
2021

Abstract

Extracting patterns and useful information from Natural Language datasets is a challenging task, especially when dealing with data written in a language different from English, like Italian. Machine and Deep Learning, together with Natural Language Processing (NLP) techniques have widely spread and improved lately, providing a plethora of useful methods to address both Supervised and Unsupervised problems on textual information. We propose RECKONition, a NLP-based system for Industrial Accidents at Work Prevention. RECKONition, which is meant to provide Natural Language Understanding, Clustering and Inference, is the result of a joint partnership with the Italian National Institute for Insurance against Accidents at Work (INAIL). The obtained results showed the ability to process textual data written in Italian describing industrial accidents dynamics and consequences.
CEUR Workshop Proceedings
Industry 4.0
Natural language processing
Workplace safety
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1207987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact