Semi-active control is the most employed technology for electronic suspension systems. The damping can be regulated to trade-off comfort and handling. Due to its success in industrial applications, semi-active control design has been extensively investigated in literature mainly from a model-based perspective. In this contribution, the authors propose a novel control strategy derived via a sequential learning framework, which selects the most significant feedback measurements for semi-active control and learns the optimal policy from data. As opposed to most of the contributions based on deep-learning approaches, the output of the proposed methodology is a control algorithm consisting of few parameters, which can be easily ported and calibrated on a real vehicle. Experimental validation on a sports-car shows that the proposed algorithm is superior in damping the body resonance with respect to the state-of-the-art skyhook algorithm. Indeed, the learned control policy consists of an augmentation of skyhook.
Enhancing skyhook for semi-active suspension control via machine learning
Savaia G.;Formentin S.;Panzani G.;Corno M.;Savaresi S. M.
2021-01-01
Abstract
Semi-active control is the most employed technology for electronic suspension systems. The damping can be regulated to trade-off comfort and handling. Due to its success in industrial applications, semi-active control design has been extensively investigated in literature mainly from a model-based perspective. In this contribution, the authors propose a novel control strategy derived via a sequential learning framework, which selects the most significant feedback measurements for semi-active control and learns the optimal policy from data. As opposed to most of the contributions based on deep-learning approaches, the output of the proposed methodology is a control algorithm consisting of few parameters, which can be easily ported and calibrated on a real vehicle. Experimental validation on a sports-car shows that the proposed algorithm is superior in damping the body resonance with respect to the state-of-the-art skyhook algorithm. Indeed, the learned control policy consists of an augmentation of skyhook.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2468601821000134-main.pdf
Accesso riservato
Descrizione: publisher version
:
Publisher’s version
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.