The fundamental issue for Beyond fifth Generation (B5G) is providing a pervasive connection to heterogeneous and various devices in smart environments. Therefore, Drones play a vital role in the B5G, allowing for wireless broadcast and high-speed communications. In addition, the drone offers several advantages compared to fixed terrestrial communications, including flexible deployment, robust Line of Sight (LoS) connections, and more design degrees of freedom due to controlled mobility. Drones can provide reliable and high data rate connectivity to users irrespective of their location. However, atmospheric disturbances impact the signal quality between drones and users and degrade the system performance. Considering practical implementation, the location of drones makes the drone–user communication susceptible to several environmental disturbances. In this paper, we evaluate the performance of drone-user connectivity during atmospheric disturbances. Further, a Machine Learning (ML)-assisted algorithm is proposed to adapt to a modulation technique that offers optimal performance during atmospheric disturbances. The results show that, with the algorithm, the system switches to a lower order modulation scheme during higher rain rate and provides reliable communication with optimized data rate and error performance.

Machine learning-assisted adaptive modulation for optimized drone-user communication in b5g

Magarini M.;
2021-01-01

Abstract

The fundamental issue for Beyond fifth Generation (B5G) is providing a pervasive connection to heterogeneous and various devices in smart environments. Therefore, Drones play a vital role in the B5G, allowing for wireless broadcast and high-speed communications. In addition, the drone offers several advantages compared to fixed terrestrial communications, including flexible deployment, robust Line of Sight (LoS) connections, and more design degrees of freedom due to controlled mobility. Drones can provide reliable and high data rate connectivity to users irrespective of their location. However, atmospheric disturbances impact the signal quality between drones and users and degrade the system performance. Considering practical implementation, the location of drones makes the drone–user communication susceptible to several environmental disturbances. In this paper, we evaluate the performance of drone-user connectivity during atmospheric disturbances. Further, a Machine Learning (ML)-assisted algorithm is proposed to adapt to a modulation technique that offers optimal performance during atmospheric disturbances. The results show that, with the algorithm, the system switches to a lower order modulation scheme during higher rain rate and provides reliable communication with optimized data rate and error performance.
2021
Adaptive modulation
B5G
Drone
K-means clustering
Machine learning
File in questo prodotto:
File Dimensione Formato  
drones-Machine Learning-Assisted.pdf

Accesso riservato

: Publisher’s version
Dimensione 409.69 kB
Formato Adobe PDF
409.69 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1206970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact