Pulmonary lobectomy is the gold standard intervention for lung cancer removal and consists of the complete resection of the affected lung lobe, which, coupled with the re-adaptation of the remaining thoracic structures, decreases the postoperative pulmonary function of the patient. Current clinical practice, based on spirometry and cardiopulmonary exercise tests, does not consider local changes, providing an average at-the-mouth estimation of residual functionality. Computational Fluid Dynamics (CFD) has proved a valuable solution to obtain quantitative and local information about airways airflow dynamics. A CFD investigation was performed on the airway tree of a left-upper pulmonary lobectomy patient, to quantify the effects of the postoperative alterations. The patient-specific bronchial models were reconstructed from pre- and postoperative CT scans. A parametric laryngeal model was merged to the geometries to account for physiological-like inlet conditions. Numerical simulations were performed in Fluent. The postoperative configuration revealed fluid dynamic variations in terms of global velocity (+23%), wall pressure (+48%), and wall shear stress (+39%). Local flow disturbances emerged at the resection site: a high-velocity peak of 4.92 m/s was found at the left-lower lobe entrance, with a local increase of pressure at the suture zone (18 Pa). The magnitude of pressure and secondary flows increased in the trachea and flow dynamics variations were observed also in the contralateral lung, causing altered lobar ventilation. The results confirmed that CFD is a patient-specific approach for a quantitative evaluation of fluid dynamics parameters and local ventilation providing additional information with respect to current clinical approaches.

Computational fluid dynamics of the airways after left-upper pulmonary lobectomy: A case study

Tullio M.;Aliboni L.;Pennati F.;Aliverti A.
2021-01-01

Abstract

Pulmonary lobectomy is the gold standard intervention for lung cancer removal and consists of the complete resection of the affected lung lobe, which, coupled with the re-adaptation of the remaining thoracic structures, decreases the postoperative pulmonary function of the patient. Current clinical practice, based on spirometry and cardiopulmonary exercise tests, does not consider local changes, providing an average at-the-mouth estimation of residual functionality. Computational Fluid Dynamics (CFD) has proved a valuable solution to obtain quantitative and local information about airways airflow dynamics. A CFD investigation was performed on the airway tree of a left-upper pulmonary lobectomy patient, to quantify the effects of the postoperative alterations. The patient-specific bronchial models were reconstructed from pre- and postoperative CT scans. A parametric laryngeal model was merged to the geometries to account for physiological-like inlet conditions. Numerical simulations were performed in Fluent. The postoperative configuration revealed fluid dynamic variations in terms of global velocity (+23%), wall pressure (+48%), and wall shear stress (+39%). Local flow disturbances emerged at the resection site: a high-velocity peak of 4.92 m/s was found at the left-lower lobe entrance, with a local increase of pressure at the suture zone (18 Pa). The magnitude of pressure and secondary flows increased in the trachea and flow dynamics variations were observed also in the contralateral lung, causing altered lobar ventilation. The results confirmed that CFD is a patient-specific approach for a quantitative evaluation of fluid dynamics parameters and local ventilation providing additional information with respect to current clinical approaches.
2021
computational fluid dynamics
imaged-based
pulmonary lobectomy
tracheobronchial tree modeling
Bronchi
Computer Simulation
Humans
Trachea
Hydrodynamics
Lung
File in questo prodotto:
File Dimensione Formato  
Tullio-CFD lobectomy -Int J Numer Meth Biomed Eng-2021-rid.pdf

accesso aperto

: Publisher’s version
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1206792
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact