The present study aims to develop and validate a cuffless method for blood pressure continuous measurement through a wearable device. The goal is achieved according to the time-delay method, with the guiding principle of the time relation it takes for a blood volume to travel from the heart to a peripheral site. Inversely proportional to the blood pressure, this time relation is obtained as the time occurring between the R peak of the electrocardiographic signal and a marker point on the photoplethysmographic wave. Such physiological signals are recorded by using L.I.F.E. Italia’s wearable device, made of a sensorized shirt and wristband. A linear regression model is implemented to estimate the corresponding blood pressure variations from the obtained time-delay and other features of the photoplethysmographic wave. Then, according to the international standards, the model performance is assessed, comparing the estimates with the measurements provided by a certified digital sphygmomanometer. According to the standards, the results obtained during this study are notable, with 85% of the errors lower than 10 mmHg and a mean absolute error lower than 7 mmHg. In conclusion, this study suggests a time-delay method for continuous blood pressure estimates with good performance, compared with a reference device based on the oscillometric technique.

Blood pressure continuous measurement through a wearable device: development and validation of a cuffless method

De Marchi B.;Aliverti A.
2021-01-01

Abstract

The present study aims to develop and validate a cuffless method for blood pressure continuous measurement through a wearable device. The goal is achieved according to the time-delay method, with the guiding principle of the time relation it takes for a blood volume to travel from the heart to a peripheral site. Inversely proportional to the blood pressure, this time relation is obtained as the time occurring between the R peak of the electrocardiographic signal and a marker point on the photoplethysmographic wave. Such physiological signals are recorded by using L.I.F.E. Italia’s wearable device, made of a sensorized shirt and wristband. A linear regression model is implemented to estimate the corresponding blood pressure variations from the obtained time-delay and other features of the photoplethysmographic wave. Then, according to the international standards, the model performance is assessed, comparing the estimates with the measurements provided by a certified digital sphygmomanometer. According to the standards, the results obtained during this study are notable, with 85% of the errors lower than 10 mmHg and a mean absolute error lower than 7 mmHg. In conclusion, this study suggests a time-delay method for continuous blood pressure estimates with good performance, compared with a reference device based on the oscillometric technique.
2021
Blood pressure
Continuous monitoring
Cuffless
Noninvasive
Photo-plethysmography
Pulse arrival time
Time-delay method
Wearable device
Blood Pressure
Blood Pressure Determination
Pulse Wave Analysis
Sphygmomanometers
Photoplethysmography
Wearable Electronic Devices
File in questo prodotto:
File Dimensione Formato  
DeMarchi-Sensors-21-07334-2021.pdf

accesso aperto

: Publisher’s version
Dimensione 5.06 MB
Formato Adobe PDF
5.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1206777
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact