One of the most remarkable structural elements characterizing the Milan Cathedral is its main spire, reaching the height of about 108 m and supporting the statue of the Virgin Mary. The Main Spire, built in Candoglia marble and completed in 1762, is about 40 m high and stands on the tiburio of the cathedral (i.e., the prismatic structure with octagonal base built around the main dome). The spire consists of a central column which is connected through a spiral staircase to 8 perimeter columns, with each column being stiffened by a flying buttress. The structural arrangement is completed by (i) metallic clamps and dowels, connecting the marble blocks, and (ii) metallic rods, connecting the perimeter columns to the central core. A large monitoring system has been recently designed and installed in the Milan Cathedral, aimed at enhancing the knowledge and assisting the condition-based structural maintenance of the historic building. The new monitoring system includes temperature sensors and seismometers (electro-dynamic velocity sensors) at 3 levels of the Main Spire as well as a weather station at the top of the same spire. After a concise historic background on the Main Spire of the Milan Cathedral and the description of the sensing devices installed in this sub-structure, the paper focuses on the dynamic characteristics of the spire and their evolution during the first year of monitoring.

One-Year Dynamic Monitoring the Main Spire of the Milan Cathedral

Gentile C.;Ruccolo A.
2021-01-01

Abstract

One of the most remarkable structural elements characterizing the Milan Cathedral is its main spire, reaching the height of about 108 m and supporting the statue of the Virgin Mary. The Main Spire, built in Candoglia marble and completed in 1762, is about 40 m high and stands on the tiburio of the cathedral (i.e., the prismatic structure with octagonal base built around the main dome). The spire consists of a central column which is connected through a spiral staircase to 8 perimeter columns, with each column being stiffened by a flying buttress. The structural arrangement is completed by (i) metallic clamps and dowels, connecting the marble blocks, and (ii) metallic rods, connecting the perimeter columns to the central core. A large monitoring system has been recently designed and installed in the Milan Cathedral, aimed at enhancing the knowledge and assisting the condition-based structural maintenance of the historic building. The new monitoring system includes temperature sensors and seismometers (electro-dynamic velocity sensors) at 3 levels of the Main Spire as well as a weather station at the top of the same spire. After a concise historic background on the Main Spire of the Milan Cathedral and the description of the sensing devices installed in this sub-structure, the paper focuses on the dynamic characteristics of the spire and their evolution during the first year of monitoring.
2021
European Workshop on Structural Health Monitoring
978-303064593-9
Automated modal identification
Cultural heritage structures
Dynamic monitoring
Environmental effects
Natural frequencies
File in questo prodotto:
File Dimensione Formato  
482379_1_En_90_Chapter_Author.pdf

Accesso riservato

Descrizione: Articolo 482379_1_En_90_Chapter_Author
: Publisher’s version
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1206483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact