Recently, researchers focused their attention on the use of polymeric bioresorbable vascular scaffolds (BVSs) as alternative to permanent metallic drug-eluting stents (DESs) for the treatment of atherosclerotic coronary arteries. Due to the different mechanical properties, polymeric stents, if compared to DESs, are characterized by larger strut size and specific design. It implies that during the crimping phase, BVSs undergo higher deformation and the packing of the struts, making this process potentially critical for the onset of damage. In this work, a computational study on the crimping procedure of a PLLA stent, inspired by the Absorb GT1 (Abbott Vascular) design, is performed, with the aim of evaluating how different strategies (loading steps, velocities and temperatures) can influence the results in terms of damage risk and final crimped diameter. For these simulations, an elastic-viscous-plastic model was adopted, based on experimental results, obtained from tensile testing of PLLA specimens loaded according to ad hoc experimental protocols. Furthermore, the results of these simulations were compared with those obtained by neglecting strain rate and temperature dependence in the material model (as often done in the literature), showing how this lead to significant differences in the prediction of the crimped diameter and internal stress state.

Comprehensive computational analysis of the crimping procedure of PLLA BVS: effects of material viscous-plastic and temperature dependent behavior

Antonini L.;Poletti G.;Mandelli L.;Dubini G.;Pennati G.;Petrini L.
2021-01-01

Abstract

Recently, researchers focused their attention on the use of polymeric bioresorbable vascular scaffolds (BVSs) as alternative to permanent metallic drug-eluting stents (DESs) for the treatment of atherosclerotic coronary arteries. Due to the different mechanical properties, polymeric stents, if compared to DESs, are characterized by larger strut size and specific design. It implies that during the crimping phase, BVSs undergo higher deformation and the packing of the struts, making this process potentially critical for the onset of damage. In this work, a computational study on the crimping procedure of a PLLA stent, inspired by the Absorb GT1 (Abbott Vascular) design, is performed, with the aim of evaluating how different strategies (loading steps, velocities and temperatures) can influence the results in terms of damage risk and final crimped diameter. For these simulations, an elastic-viscous-plastic model was adopted, based on experimental results, obtained from tensile testing of PLLA specimens loaded according to ad hoc experimental protocols. Furthermore, the results of these simulations were compared with those obtained by neglecting strain rate and temperature dependence in the material model (as often done in the literature), showing how this lead to significant differences in the prediction of the crimped diameter and internal stress state.
2021
Coronary stent
Experimental characterization
In-silico model
Material calibration
Polymeric materials
Strain rate dependent materials
Absorbable Implants
Plastics
Prosthesis Design
Temperature
Treatment Outcome
Drug-Eluting Stents
File in questo prodotto:
File Dimensione Formato  
2021_Antoninietal_JMBBM-preprint.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1206321
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 1
social impact