The paper is devoted to the measurement and to the processing of load spectra of forces and moments acting at the wheel hub of a motorcycle. Smart wheels (SWs) have been specifically developed for the scope. Throughout the paper, the extreme case of a race motorcycle is considered. Accurate load spectra were measured in two race circuits. Standardized load spectra are derived by processing measured data. A way to easily generalize the measured load spectra is proposed for the first time for motorcycles. Several loading conditions, related to the motorcycle straight line motion, cornering, curb hit and gear shift, are identified and extracted from the experimental measures. For each loading condition, by means of simple semi-analytical models (SAMs), a relationship is found between the vertical force on the wheel, the tilt angle of the motorcycle and the remaining forces and moments acting at the wheel hub. Such relationships are nothing else than the standardized load spectra. Additionally, a simple and efficient method based on smart wheels for real-time structural monitoring is proposed. Standardized load spectra prove to provide consistent results even when compared to real-time structural monitoring data. By means of the presented smart wheels, advanced lightweight motorcycle construction is enabled by derivation of standardized load spectra or real time estimation of the damage of structural components.

Motorcycle Structural Fatigue Monitoring Using Smart Wheels

Ballo, Federico;Comolli, Francesco;Gobbi, Massimiliano;Mastinu, Gianpiero
2020-01-01

Abstract

The paper is devoted to the measurement and to the processing of load spectra of forces and moments acting at the wheel hub of a motorcycle. Smart wheels (SWs) have been specifically developed for the scope. Throughout the paper, the extreme case of a race motorcycle is considered. Accurate load spectra were measured in two race circuits. Standardized load spectra are derived by processing measured data. A way to easily generalize the measured load spectra is proposed for the first time for motorcycles. Several loading conditions, related to the motorcycle straight line motion, cornering, curb hit and gear shift, are identified and extracted from the experimental measures. For each loading condition, by means of simple semi-analytical models (SAMs), a relationship is found between the vertical force on the wheel, the tilt angle of the motorcycle and the remaining forces and moments acting at the wheel hub. Such relationships are nothing else than the standardized load spectra. Additionally, a simple and efficient method based on smart wheels for real-time structural monitoring is proposed. Standardized load spectra prove to provide consistent results even when compared to real-time structural monitoring data. By means of the presented smart wheels, advanced lightweight motorcycle construction is enabled by derivation of standardized load spectra or real time estimation of the damage of structural components.
2020
spectral method
smart wheel
structural monitoring
motorcycle
load spectra
fatigue
damage estimation
prognostics
File in questo prodotto:
File Dimensione Formato  
vehicles-02-00037.pdf

accesso aperto

: Publisher’s version
Dimensione 8.92 MB
Formato Adobe PDF
8.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1205917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact