This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the validity and effectiveness of the proposed algorithms by simulation.

Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback stabilization

Karimi H. R.;
2021-01-01

Abstract

This paper deals with new finite-time estimation algorithms for Linear Parameter Varying (LPV) discrete-time systems and their application to output feedback stabilization. Two exact finite-time estimation schemes are proposed. The first scheme provides a direct and explicit estimation algorithm based on the use of delayed outputs, while the second scheme uses two combined asymptotic observers, connected by a condition of invertibility of a certain time-varying matrix, to recover solution of the LPV system in a finite-time. Furthermore, two stabilization strategies are proposed. The first strategy, called Delayed Inputs/Outputs Feedback (DIOF) stabilization method, is based on the use of the explicit estimation algorithm. The second technique, called Two Connected Observers Feedback (2-COF) stabilization method, is based on the use of two combined observers providing exact finite-time estimation. A numerical example is given to show the validity and effectiveness of the proposed algorithms by simulation.
2021
Estimation
LMI approach
LPV systems
Observer design
Output feedback stabilization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1205323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact