Natural attenuation (NA) processes represent a valuable option in groundwater remediation. At a heavily 1,2-dichloroethane (1,2-DCA) contaminated site, Compound-Specific Isotope Analysis (CSIA) in combination with Biological Molecular Tools (BMTs) were implemented as a rigorous characterization approach to evaluate the occurrence of Natural Attenuation in the proximity of the source area. By the use of microcosm experiments, the potential for natural and enhanced biodegradation under anaerobic conditions was documented, following the dichloroelimination pathway. Enrichment factors of -9.1‰ and -11.3‰ were obtained for13C while Geobacter spp. and reductive dehalogenase genes (rdhs) were identified as main site-specific biomarkers. At pilot scale, enrichments of 13.5‰ and 6.3‰ for δ1313C and δ37Cl, respectively, high levels of reductive dehalogenase (rdh group VI) along with the dominance of Geobacter spp. indicated the occurrence of significant dichloroelimination processes in groundwater under anaerobic conditions. By using the site-specific enrichment factors, degradation extents over approximately 70–80% were estimated, highlighting the relevant potential of NA in 1,2-DCA degradation in the vicinity of the source area at the site. The proposed fine-tuned protocol, including CSIA and BMTs, is proven to be effective as a groundwater remediation strategy, properly assessing and monitoring NA at site scale.

1,2-DCA natural attenuation evaluation in groundwater: Insight by dual isotope 13C/.37Cl and molecular analysis approach

Marchesi M.;Pietrini I.;Alberti L.;
2021-01-01

Abstract

Natural attenuation (NA) processes represent a valuable option in groundwater remediation. At a heavily 1,2-dichloroethane (1,2-DCA) contaminated site, Compound-Specific Isotope Analysis (CSIA) in combination with Biological Molecular Tools (BMTs) were implemented as a rigorous characterization approach to evaluate the occurrence of Natural Attenuation in the proximity of the source area. By the use of microcosm experiments, the potential for natural and enhanced biodegradation under anaerobic conditions was documented, following the dichloroelimination pathway. Enrichment factors of -9.1‰ and -11.3‰ were obtained for13C while Geobacter spp. and reductive dehalogenase genes (rdhs) were identified as main site-specific biomarkers. At pilot scale, enrichments of 13.5‰ and 6.3‰ for δ1313C and δ37Cl, respectively, high levels of reductive dehalogenase (rdh group VI) along with the dominance of Geobacter spp. indicated the occurrence of significant dichloroelimination processes in groundwater under anaerobic conditions. By using the site-specific enrichment factors, degradation extents over approximately 70–80% were estimated, highlighting the relevant potential of NA in 1,2-DCA degradation in the vicinity of the source area at the site. The proposed fine-tuned protocol, including CSIA and BMTs, is proven to be effective as a groundwater remediation strategy, properly assessing and monitoring NA at site scale.
2021
1,2-dichloroethane (1,2-DCA)
Biological Molecular Tools (BMTs)
Compound-Specific Isotope Analysis (CSIA)
Enhanced bioremediation
Groundwater
Microcosm experiments
Natural attenuation
File in questo prodotto:
File Dimensione Formato  
1.2-DCA_WATER.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact