The increasingly widespread diffusion of wearable devices makes possible the continuous monitoring of vital signs, such as heart rate (HR), heart rate variability (HRV), and breath signal. However, these devices usually do not record the “gold-standard” signals, namely the electrocardiography (ECG) and respiratory activity, but a single photoplethysmographic (PPG) signal, which can be exploited to estimate HR and respiratory activity. In addition, these devices employ low sampling rates to limit power consumption. Hence, proper methods should be adopted to compensate for the resulting increased discretization error, while diverse breath-extraction algorithms may be differently sensitive to PPG sampling rate. Here, we assessed the efficacy of parabola interpolation, cubic-spline, and linear regression methods to improve the accuracy of the inter-beat intervals (IBIs) extracted from PPG sampled at decreasing rates from 64 to 8 Hz. PPG-derived IBIs and HRV indices were compared with those extracted from a standard ECG. In addition, breath signals extracted from PPG using three different techniques were compared with the gold-standard signal from a thoracic belt. Signals were recorded from eight healthy volunteers during an experimental protocol comprising sitting and standing postures and a controlled respiration task. Parabola and cubic-spline interpolation significantly increased IBIs accuracy at 32, 16, and 8 Hz sampling rates. Concerning breath signal extraction, the method holding higher accuracy was based on PPG bandpass filtering. Our results support the efficacy of parabola and spline interpolations to improve the accuracy of the IBIs obtained from low-sampling rate PPG signals, and also indicate a robust method for breath signal extraction.

Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates

Reali P.;Lolatto R.;Coelli S.;Tartaglia G.;Bianchi A. M.
2022-01-01

Abstract

The increasingly widespread diffusion of wearable devices makes possible the continuous monitoring of vital signs, such as heart rate (HR), heart rate variability (HRV), and breath signal. However, these devices usually do not record the “gold-standard” signals, namely the electrocardiography (ECG) and respiratory activity, but a single photoplethysmographic (PPG) signal, which can be exploited to estimate HR and respiratory activity. In addition, these devices employ low sampling rates to limit power consumption. Hence, proper methods should be adopted to compensate for the resulting increased discretization error, while diverse breath-extraction algorithms may be differently sensitive to PPG sampling rate. Here, we assessed the efficacy of parabola interpolation, cubic-spline, and linear regression methods to improve the accuracy of the inter-beat intervals (IBIs) extracted from PPG sampled at decreasing rates from 64 to 8 Hz. PPG-derived IBIs and HRV indices were compared with those extracted from a standard ECG. In addition, breath signals extracted from PPG using three different techniques were compared with the gold-standard signal from a thoracic belt. Signals were recorded from eight healthy volunteers during an experimental protocol comprising sitting and standing postures and a controlled respiration task. Parabola and cubic-spline interpolation significantly increased IBIs accuracy at 32, 16, and 8 Hz sampling rates. Concerning breath signal extraction, the method holding higher accuracy was based on PPG bandpass filtering. Our results support the efficacy of parabola and spline interpolations to improve the accuracy of the IBIs obtained from low-sampling rate PPG signals, and also indicate a robust method for breath signal extraction.
2022
Breath
Heart rate variability
Inter-beat intervals
Interpolation
Photoplethysmography
Sampling rate
Algorithms
Heart Rate
Humans
Respiratory Rate
Signal Processing, Computer-Assisted
Electrocardiography
File in questo prodotto:
File Dimensione Formato  
Reali 2022-Information retrieval from PPG Different sampling rates.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 11.08 MB
Formato Adobe PDF
11.08 MB Adobe PDF Visualizza/Apri
Reali 2022-Information retrieval from PPG Different sampling rates_supplementary.pdf

accesso aperto

Descrizione: Supplementary material
: Publisher’s version
Dimensione 531.8 kB
Formato Adobe PDF
531.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204584
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact