Reproducibility of results is essential for a well-designed and conducted experiment. Several reasons may originate failure in reproducing data, such as selective reporting, low statistical power, or poor analysis. In this study, we used PEG6000 samples from different distributors and tested their capability inducing spheroid formation upon surface coating. MALDI-MS, NMR, FTIR, and Triple SEC analysis of the different PEG60000s showed nearly identical physicochemical properties different, with only minor differences in mass and hydrodynamic radius, and AFM analysis showed no significant differences in the surface coatings obtained with the available PEG6000s. Despite these similarities, just one showed a highly reproducible formation of spheroids with different cell lines, such as HT-29, HeLa, Caco2, and PANC-1. Using the peculiar PEG6000 sample and a reference PEG6000 chosen amongst the others as control, we tested the effect of the cell/PEG interaction by incubating cells in the PEG solution prior to cell plating. These experiments indicate that the spheroid formation is due to direct interaction of the polymer with the cells rather than by interaction of cells with the coated surfaces. The experiments point out that for biological entities, such as cells or tissues, even very small differences in impurities or minimal variations in the starting product can have a very strong impact on the reproducibility of data.

Reproducibility warning: The curious case of polyethylene glycol 6000 and spheroid cell culture

Martinelli C.;
2020-01-01

Abstract

Reproducibility of results is essential for a well-designed and conducted experiment. Several reasons may originate failure in reproducing data, such as selective reporting, low statistical power, or poor analysis. In this study, we used PEG6000 samples from different distributors and tested their capability inducing spheroid formation upon surface coating. MALDI-MS, NMR, FTIR, and Triple SEC analysis of the different PEG60000s showed nearly identical physicochemical properties different, with only minor differences in mass and hydrodynamic radius, and AFM analysis showed no significant differences in the surface coatings obtained with the available PEG6000s. Despite these similarities, just one showed a highly reproducible formation of spheroids with different cell lines, such as HT-29, HeLa, Caco2, and PANC-1. Using the peculiar PEG6000 sample and a reference PEG6000 chosen amongst the others as control, we tested the effect of the cell/PEG interaction by incubating cells in the PEG solution prior to cell plating. These experiments indicate that the spheroid formation is due to direct interaction of the polymer with the cells rather than by interaction of cells with the coated surfaces. The experiments point out that for biological entities, such as cells or tissues, even very small differences in impurities or minimal variations in the starting product can have a very strong impact on the reproducibility of data.
2020
Caco-2 Cells
Calorimetry, Differential Scanning
Cell Culture Techniques
Chromatography, Gel
HT29 Cells
HeLa Cells
Humans
Magnetic Resonance Spectroscopy
Microscopy, Atomic Force
Polyethylene Glycols
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Spectroscopy, Fourier Transform Infrared
Spheroids, Cellular
Surface Properties
Reproducibility of Results
File in questo prodotto:
File Dimensione Formato  
Serrati et al., 2020.pdf

accesso aperto

: Publisher’s version
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204480
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact