We discuss a coherent synthetic aperture radar (SAR) formation where N identical sensors transmit at the same time, code, and frequency. This is a particular multiple-input-multiple-output (MIMO) configuration, where the transmitted waveforms interfere together, resulting in an illumination pattern that randomly changes in space and time. Similar to the single-input-multiple-output (SIMO) formations, the diversity provided by the N receiver phase centers can be used to mitigate this interference and reduce the pulse repetition frequency (PRF) for achieving large swath coverage. The good point, in the MIMO case, is that the signal-to-noise ratio (SNR) gain of the system increases, theoretically, with the square of the number of elements. However, residual spurious sidelobes may appear as ghosts of the multiple illuminators. In practice, the power gain is to be optimized, together with ambiguity rejection, sidelobes, and azimuth resolution. The actual performances achievable by these formations in terms of impulse response function (IRF), SNR, and sensitivity to the precise positioning of the sensors are discussed theoretically and based on simulations.

Compact and Free-Floating Satellite MIMO SAR Formations

Manzoni M.;Monti-Guarnieri A.;Rocca F.
2021

Abstract

We discuss a coherent synthetic aperture radar (SAR) formation where N identical sensors transmit at the same time, code, and frequency. This is a particular multiple-input-multiple-output (MIMO) configuration, where the transmitted waveforms interfere together, resulting in an illumination pattern that randomly changes in space and time. Similar to the single-input-multiple-output (SIMO) formations, the diversity provided by the N receiver phase centers can be used to mitigate this interference and reduce the pulse repetition frequency (PRF) for achieving large swath coverage. The good point, in the MIMO case, is that the signal-to-noise ratio (SNR) gain of the system increases, theoretically, with the square of the number of elements. However, residual spurious sidelobes may appear as ghosts of the multiple illuminators. In practice, the power gain is to be optimized, together with ambiguity rejection, sidelobes, and azimuth resolution. The actual performances achievable by these formations in terms of impulse response function (IRF), SNR, and sensitivity to the precise positioning of the sensors are discussed theoretically and based on simulations.
Focusing
multiple-input-multiple-output (MIMO) radar
radar imaging
spaceborne radar
synthetic aperture radar (SAR)
File in questo prodotto:
File Dimensione Formato  
[AVMG] Compact_and_Free-Floating_Satellite_MIMO_SAR_Formations.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact