Hybrid nanostructures in which organic molecules are interfaced with metal surfaces hold promise for the discovery of intriguing physical and chemical phenomena, as well as for the development of innovative devices. In this frame, it is crucial to understand the interplay between the structural details of the interface and the electronic properties of the system. Here, an experimental investigation of the C60/Ni(111) interface is performed by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low-energy electron diffraction (LEED). The deposition of C60 at room temperature, followed by high-temperature annealing, promotes the stabilization of two different phases. A hitherto unreported phase forming a (7 × 7) honeycomb overlayer coexists with the well-known (4 × 4) reconstruction. Highly resolved STM images disclose the adsorption geometry of the molecules for both phases. STS reveals that the electronic properties of C60/Ni(111) are strongly influenced by the morphology of the interface, suggesting the possibility of tuning the electronic properties of the organic/inorganic heterostructures by adjusting the structural coupling with the substrate. This achievement can be important for hybrid magnetic interfaces, where the harmonization between the molecular and the magnetic orders can enhance the development of hybrid magnetic states.

Observation of a Metastable Honeycomb Arrangement of C60 on Ni(111) with (7 × 7) Periodicity: Tailoring an Interface for Organic Spintronics

Picone A.;Finazzi M.;Duò Lamberto;Giannotti D.;Ciccacci F.;Brambilla A.
2021

Abstract

Hybrid nanostructures in which organic molecules are interfaced with metal surfaces hold promise for the discovery of intriguing physical and chemical phenomena, as well as for the development of innovative devices. In this frame, it is crucial to understand the interplay between the structural details of the interface and the electronic properties of the system. Here, an experimental investigation of the C60/Ni(111) interface is performed by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low-energy electron diffraction (LEED). The deposition of C60 at room temperature, followed by high-temperature annealing, promotes the stabilization of two different phases. A hitherto unreported phase forming a (7 × 7) honeycomb overlayer coexists with the well-known (4 × 4) reconstruction. Highly resolved STM images disclose the adsorption geometry of the molecules for both phases. STS reveals that the electronic properties of C60/Ni(111) are strongly influenced by the morphology of the interface, suggesting the possibility of tuning the electronic properties of the organic/inorganic heterostructures by adjusting the structural coupling with the substrate. This achievement can be important for hybrid magnetic interfaces, where the harmonization between the molecular and the magnetic orders can enhance the development of hybrid magnetic states.
fullerenes
nickel
scanning tunneling microscopy
spinterfaces
surface structure
File in questo prodotto:
File Dimensione Formato  
acsanm_picone_Observation of a Metastable Honeycomb Arrangement of C60 on Ni(111) with (7 × 7) Periodicity Tailoring an Interface for Organic Spintronics.pdf

accesso aperto

: Publisher’s version
Dimensione 8.05 MB
Formato Adobe PDF
8.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1204213
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact