Internal and surface imperfections are known to reduce the fatigue strength of parts fabricated by laser powder bed fusion (LPBF). Post-treatment can play a key role to ameliorate the adverse effects of these defects. In this study, severe vibratory peening, as a novel surface treatment based on severe plastic deformation, was applied for the first time on LPBF material. The effects of this mechanical surface treatment were investigated individually and in combination with heat treatment on microstructural and mechanical properties of V-notched LPBF AlSi10Mg samples. The results revealed the simultaneous formation of microstructural and chemical gradients on the surface layer of the mechanically treated samples, resulting in remarkable mechanical properties’ improvement. In addition, the hybrid thermal and mechanical post-treatment significantly improved the fatigue life compared to the as-built condition, through affecting multiple physical phenomena regarding surface and subsurface characteristics.

The effects of microstructural and chemical surface gradients on fatigue performance of laser powder bed fusion AlSi10Mg

Erfan Maleki;Sara Bagherifard;Mario Guagliano
2022-01-01

Abstract

Internal and surface imperfections are known to reduce the fatigue strength of parts fabricated by laser powder bed fusion (LPBF). Post-treatment can play a key role to ameliorate the adverse effects of these defects. In this study, severe vibratory peening, as a novel surface treatment based on severe plastic deformation, was applied for the first time on LPBF material. The effects of this mechanical surface treatment were investigated individually and in combination with heat treatment on microstructural and mechanical properties of V-notched LPBF AlSi10Mg samples. The results revealed the simultaneous formation of microstructural and chemical gradients on the surface layer of the mechanically treated samples, resulting in remarkable mechanical properties’ improvement. In addition, the hybrid thermal and mechanical post-treatment significantly improved the fatigue life compared to the as-built condition, through affecting multiple physical phenomena regarding surface and subsurface characteristics.
2022
Laser powder bed fusion (LPBF), Severe vibratory peening, Heat treatment, Fatigue, Notch, AliSi10Mg
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0921509322003690-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1203938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 12
social impact