The study of functional brain-heart interplay has provided meaningful insights in cardiology and neuroscience. Regarding biosignal processing, this interplay involves predominantly neural and heartbeat linear dynamics expressed via time and frequency domain-related features. However, the dynamics of central and autonomous nervous systems show nonlinear and multifractal behaviours, and the extent to which this behaviour influences brain-heart interactions is currently unknown. Here, we report a novel signal processing framework aimed at quantifying nonlinear functional brain-heart interplay in the non-Gaussian and multifractal domains that combines electroencephalography (EEG) and heart rate variability series. This framework relies on a maximal information coefficient analysis between nonlinear multiscale features derived from EEG spectra and from an inhomogeneous point-process model for heartbeat dynamics. Experimental results were gathered from 24 healthy volunteers during a resting state and a cold pressor test, revealing that synchronous changes between brain and heartbeat multifractal spectra occur at higher EEG frequency bands and through nonlinear/complex cardiovascular control. We conclude that significant bodily, sympathovagal changes such as those elicited by cold-pressure stimuli affect the functional brain-heart interplay beyond second-order statistics, thus extending it to multifractal dynamics. These results provide a platform to define novel nervous-system-targeted biomarkers. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.

Functional brain-heart interplay extends to the multifractal domain

Barbieri R.;Abry P.;
2021-01-01

Abstract

The study of functional brain-heart interplay has provided meaningful insights in cardiology and neuroscience. Regarding biosignal processing, this interplay involves predominantly neural and heartbeat linear dynamics expressed via time and frequency domain-related features. However, the dynamics of central and autonomous nervous systems show nonlinear and multifractal behaviours, and the extent to which this behaviour influences brain-heart interactions is currently unknown. Here, we report a novel signal processing framework aimed at quantifying nonlinear functional brain-heart interplay in the non-Gaussian and multifractal domains that combines electroencephalography (EEG) and heart rate variability series. This framework relies on a maximal information coefficient analysis between nonlinear multiscale features derived from EEG spectra and from an inhomogeneous point-process model for heartbeat dynamics. Experimental results were gathered from 24 healthy volunteers during a resting state and a cold pressor test, revealing that synchronous changes between brain and heartbeat multifractal spectra occur at higher EEG frequency bands and through nonlinear/complex cardiovascular control. We conclude that significant bodily, sympathovagal changes such as those elicited by cold-pressure stimuli affect the functional brain-heart interplay beyond second-order statistics, thus extending it to multifractal dynamics. These results provide a platform to define novel nervous-system-targeted biomarkers. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
2021
brain-heart interplay
electroencephalography
heart rate variability
maximal information coefficient
multifractal spectra
point process
Brain
Heart Rate
Humans
Nonlinear Dynamics
Signal Processing, Computer-Assisted
Electroencephalography
Heart
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1203747
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 10
social impact