This work aims to evaluate the non-carcinogenic health effects related to landfill odor emissions, therefore focusing on workers involved in dynamic olfactometry. Currently, the most common technique to quantify odor emissions is dynamic olfactometry, a sensorial analysis involving human assessors. During the analysis, assessors are directly exposed, at increasing concentrations, to odor samples, and thus to the hazardous pollutants contained therein. This entails the need to estimate the associated exposure risk to guarantee examiners’ safety. Therefore, this paper evaluates the exposure risk for olfactometric examiners to establish the minimum dilution level to be adopted during the analysis of landfills’ odorous samples to guarantee panelists’ safety. For this purpose, an extensive literature review regarding the pollutants emitted by landfill odor sources was conducted, comparing compounds’ chemical concentrations and threshold limit values (TLVs) to calculate the Hazard Index (HI) and thus establish a minimum dilution value. The data collected indicate that a non-negligible non-carcinogenic risk exists for all landfill emissions considered. However, from the data considered, the minimum dilution factor to be adopted is lower than the typical odor concentration observed for these sources. Therefore, the olfactometric analysis of landfill samples can be generally conducted in safe conditions.

Evaluation of occupational exposure risk for employees working in dynamic olfactometry: Focus on non-carcinogenic effects correlated with exposure to landfill emissions

Polvara E.;Capelli L.;Sironi S.
2021-01-01

Abstract

This work aims to evaluate the non-carcinogenic health effects related to landfill odor emissions, therefore focusing on workers involved in dynamic olfactometry. Currently, the most common technique to quantify odor emissions is dynamic olfactometry, a sensorial analysis involving human assessors. During the analysis, assessors are directly exposed, at increasing concentrations, to odor samples, and thus to the hazardous pollutants contained therein. This entails the need to estimate the associated exposure risk to guarantee examiners’ safety. Therefore, this paper evaluates the exposure risk for olfactometric examiners to establish the minimum dilution level to be adopted during the analysis of landfills’ odorous samples to guarantee panelists’ safety. For this purpose, an extensive literature review regarding the pollutants emitted by landfill odor sources was conducted, comparing compounds’ chemical concentrations and threshold limit values (TLVs) to calculate the Hazard Index (HI) and thus establish a minimum dilution value. The data collected indicate that a non-negligible non-carcinogenic risk exists for all landfill emissions considered. However, from the data considered, the minimum dilution factor to be adopted is lower than the typical odor concentration observed for these sources. Therefore, the olfactometric analysis of landfill samples can be generally conducted in safe conditions.
2021
Emission inventory
Landfill
Odor pollution
Risk assessment
Sensorial analysis
Workers’ exposure
File in questo prodotto:
File Dimensione Formato  
2021_Atmosphere_Exposure-Risk-Olfactometry-Landfills.pdf

accesso aperto

: Publisher’s version
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1203691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact