We prove that the Robin ground state and the Robin torsion function are respectively log-concave and1/2-concave on an uniformly convex domain Ω ⊂ ℝ^N of class C^m, with [m –N/2 ] ≥ 4, provided the Robin parameter exceeds a critical threshold. Such threshold depends on N, m, and on the geometry of Ω, precisely on the diameter and on the boundary curvatures up to order m.

Concavity properties of solutions to Robin problems

Crasta, Graziano;Fragala', Ilaria
2021-01-01

Abstract

We prove that the Robin ground state and the Robin torsion function are respectively log-concave and1/2-concave on an uniformly convex domain Ω ⊂ ℝ^N of class C^m, with [m –N/2 ] ≥ 4, provided the Robin parameter exceeds a critical threshold. Such threshold depends on N, m, and on the geometry of Ω, precisely on the diameter and on the boundary curvatures up to order m.
2021
File in questo prodotto:
File Dimensione Formato  
11311-1203466_Crasta.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 340.88 kB
Formato Adobe PDF
340.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1203466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact