Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.

Interface-Driven Assembly of Pentacene/MoS2 Lateral Heterostructures

F. Tumino;A. Rabia;A. Li Bassi;C. S. Casari
2022

Abstract

Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.
File in questo prodotto:
File Dimensione Formato  
Tumino_etal_revised.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 17.98 MB
Formato Adobe PDF
17.98 MB Adobe PDF Visualizza/Apri
tumino_JPCC22.pdf

accesso aperto

: Publisher’s version
Dimensione 9.07 MB
Formato Adobe PDF
9.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1203328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact