Combining the information coming from multiview acquisitions is a problem of great interest in light-sheet microscopy. Aligning the views and increasing the resolution of their fusion can be challenging, especially if the setup is not fully calibrated. Here, we tackle these issues by proposing a new reconstruction method based on autocorrelation inversion that avoids alignment procedures. On top of this, we add a blind deconvolution step to improve the resolution of the final reconstruction. Our method permits us to achieve inherently aligned, highly resolved reconstructions while, at the same time, estimating the unknown point-spread function of the system.
Blind deconvolution in autocorrelation inversion for multiview light-sheet microscopy
Corbetta E.;Candeo A.;Bassi A.;Ancora D.
2022-01-01
Abstract
Combining the information coming from multiview acquisitions is a problem of great interest in light-sheet microscopy. Aligning the views and increasing the resolution of their fusion can be challenging, especially if the setup is not fully calibrated. Here, we tackle these issues by proposing a new reconstruction method based on autocorrelation inversion that avoids alignment procedures. On top of this, we add a blind deconvolution step to improve the resolution of the final reconstruction. Our method permits us to achieve inherently aligned, highly resolved reconstructions while, at the same time, estimating the unknown point-spread function of the system.File | Dimensione | Formato | |
---|---|---|---|
Microscopy Res Technique - 2022 - Corbetta - Blind deconvolution in autocorrelation inversion for multiview light‐sheet.pdf
accesso aperto
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
4.12 MB
Formato
Adobe PDF
|
4.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.