Plasma Electrolytic Oxidation (PEO) was applied to extruded ZM21 Mg alloys to improve their corrosion resistance in a chloride-containing environment. PEO was carried out in DC mode and voltage control in a fluoride-free electrolyte. Potentiodynamic polarization tests in 3.5 wt.% NaCl aqueous solution and neutral salt spray (NSS) tests were carried out. Microstructural and profilometric characterization, as well as NSS tests were performed in different conditions: (i) bare ZM21, (ii) PEO-treated ZM21, (iii) powder-coated ZM21 (without PEO interlayer), and (iv) PEO-treated ZM21 with powder coating top layer (carboxyl-functionalized polyester resin). The PEO + powder coating double layer was identified as the best-performing corrosion protection.
Improving the corrosion resistance of wrought zm21 magnesium alloys by plasma electrolytic oxidation and powder coating
Ballam L. R.;Arab H.;Bestetti M.;Franz S.;Martini C.
2021-01-01
Abstract
Plasma Electrolytic Oxidation (PEO) was applied to extruded ZM21 Mg alloys to improve their corrosion resistance in a chloride-containing environment. PEO was carried out in DC mode and voltage control in a fluoride-free electrolyte. Potentiodynamic polarization tests in 3.5 wt.% NaCl aqueous solution and neutral salt spray (NSS) tests were carried out. Microstructural and profilometric characterization, as well as NSS tests were performed in different conditions: (i) bare ZM21, (ii) PEO-treated ZM21, (iii) powder-coated ZM21 (without PEO interlayer), and (iv) PEO-treated ZM21 with powder coating top layer (carboxyl-functionalized polyester resin). The PEO + powder coating double layer was identified as the best-performing corrosion protection.File | Dimensione | Formato | |
---|---|---|---|
Ballam 2021.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.28 MB
Formato
Adobe PDF
|
3.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.