The RDF Stream Processing (RSP) community has proposed several models and languages for continuously querying and reasoning over RDF streams over the last decade. They each have their semantics, making them hard to compare. The variety of approaches has fostered both empirical and theoretical research and led to the design of RSPQL, i.e., a unifying model for RSP. However, an RSP API for the development under RSPQL semantics was still missing. RSP community would benefit from an RSP API because it can foster comparable and reproducible research by providing programming abstractions based on RSPQL semantics. Moreover, it can encourage further development and in-use research. Finally, it can stimulate practical activities such as tutorials, lectures, and challenges, e.g., during the Stream Reasoning Workshop. In this paper, we present RSP4J, a flexible API for the development of RSP engines and applications under RSPQL semantics. RSP4J offers all the necessary abstractions required for fast-prototyping of RSP engines under the proposed RSPQL semantics. Users can configure it to reproduce the variety of RSP engine behaviors in a comparable software environment. To promote systematic and comparative research, RSP4J is open-source, provides canonical citation, permanent web identifiers, and a comprehensive user guide for developers.
RSP4J: An API for RDF Stream Processing
Tommasini, Riccardo;Della Valle, Emanuele
2021-01-01
Abstract
The RDF Stream Processing (RSP) community has proposed several models and languages for continuously querying and reasoning over RDF streams over the last decade. They each have their semantics, making them hard to compare. The variety of approaches has fostered both empirical and theoretical research and led to the design of RSPQL, i.e., a unifying model for RSP. However, an RSP API for the development under RSPQL semantics was still missing. RSP community would benefit from an RSP API because it can foster comparable and reproducible research by providing programming abstractions based on RSPQL semantics. Moreover, it can encourage further development and in-use research. Finally, it can stimulate practical activities such as tutorials, lectures, and challenges, e.g., during the Stream Reasoning Workshop. In this paper, we present RSP4J, a flexible API for the development of RSP engines and applications under RSPQL semantics. RSP4J offers all the necessary abstractions required for fast-prototyping of RSP engines under the proposed RSPQL semantics. Users can configure it to reproduce the variety of RSP engine behaviors in a comparable software environment. To promote systematic and comparative research, RSP4J is open-source, provides canonical citation, permanent web identifiers, and a comprehensive user guide for developers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.