In the industrial contexts of the digital era, data, information and knowledge should seamlessly flow throughout the product lifecycle, and be available at any time and to any agent acting in the value creation stream. PLM is one of the enabler of this scenario, striving to scale the "cobbler"model - where people, information, resources and processes are perfectly integrated - to modern industrial realities operating with multi-disciplinary teams and world-wide dispersed internal and external resources. Yet, despite many industrial realities has invested in the institutionalization of a PLM system, still approx. 60% of time in the value creation process is wasted in searching and waiting for data, data translation, working with wrong data or reinvention of the existing knowledge. After having analyzed the above scenario in the context of a real big industrial reality operating in the turbo-machinery production for Oil & Gas and Engery markets, the present paper aims to propose a solution introducing a working approach based on the modeling of the knowledge domain relevant to a product and its data model by an OWL-DL ontology, and to present the relevant preliminary results. The final target will be the establishment of an ontology-based domain model as the foundation for a digital, human-machine interoperable, product knowledge and data lifecycle management system to bridge the diverse agents operating in the Product Lifecycle Management.

ONTOLOGY FOR PRODUCT LIFECYCLE MANAGEMENT IN THE OIL&GAS TURBOMACHINERY INDUSTRY

Failla L.;Rossoni M.;Colombo G.
2021-01-01

Abstract

In the industrial contexts of the digital era, data, information and knowledge should seamlessly flow throughout the product lifecycle, and be available at any time and to any agent acting in the value creation stream. PLM is one of the enabler of this scenario, striving to scale the "cobbler"model - where people, information, resources and processes are perfectly integrated - to modern industrial realities operating with multi-disciplinary teams and world-wide dispersed internal and external resources. Yet, despite many industrial realities has invested in the institutionalization of a PLM system, still approx. 60% of time in the value creation process is wasted in searching and waiting for data, data translation, working with wrong data or reinvention of the existing knowledge. After having analyzed the above scenario in the context of a real big industrial reality operating in the turbo-machinery production for Oil & Gas and Engery markets, the present paper aims to propose a solution introducing a working approach based on the modeling of the knowledge domain relevant to a product and its data model by an OWL-DL ontology, and to present the relevant preliminary results. The final target will be the establishment of an ontology-based domain model as the foundation for a digital, human-machine interoperable, product knowledge and data lifecycle management system to bridge the diverse agents operating in the Product Lifecycle Management.
2021
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
978-0-7918-8560-4
File in questo prodotto:
File Dimensione Formato  
imece2021-71081.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1202904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact