There is an increasing demand for kinetic models of surrogate components to predict the combustion and emissions of real fuels. In this paper, a new surrogate fuel mechanism, C3MechV3.3, is proposed by the Computational Chemistry Consortium (C3). This mechanism is constructed based on a C0 – C4 core mechanism, with important species of interest in complex fuel surrogates such as the hexane isomers, n-heptane, iso-octane, nC8 – nC12 linear alkanes as well as polycyclic aromatic hydrocarbons (PAHs) and NOx as pollutants. This kinetic model consists of the latest chemistry subsets developed by the different partners in the context of the C3 effort. The proposed model was tested against a comprehensive set of experimental data for various fuels and blends over a wide range of temperatures, pressures, dilutions and equivalence ratios. Overall, the model shows good predictions for most of the experimental data. In particular, the focus of the validation is on natural gas/n-alkanes, primary reference fuel (PRF) and toluene primary reference fuel (TPRF) mixtures. Due to the large size of C3MechV3.3, a mechanism processing tool was developed to abstract species and reactions to generate any particular surrogate fuel and multi- fuel mechanisms of smaller size which can be used for preliminary mechanism reduction.

A new detailed kinetic model for surrogate fuels: C3MechV3.3

Pratali Maffei, Luna;Nobili, Andrea;Pelucchi, Matteo;Faravelli, Tiziano;
2022-01-01

Abstract

There is an increasing demand for kinetic models of surrogate components to predict the combustion and emissions of real fuels. In this paper, a new surrogate fuel mechanism, C3MechV3.3, is proposed by the Computational Chemistry Consortium (C3). This mechanism is constructed based on a C0 – C4 core mechanism, with important species of interest in complex fuel surrogates such as the hexane isomers, n-heptane, iso-octane, nC8 – nC12 linear alkanes as well as polycyclic aromatic hydrocarbons (PAHs) and NOx as pollutants. This kinetic model consists of the latest chemistry subsets developed by the different partners in the context of the C3 effort. The proposed model was tested against a comprehensive set of experimental data for various fuels and blends over a wide range of temperatures, pressures, dilutions and equivalence ratios. Overall, the model shows good predictions for most of the experimental data. In particular, the focus of the validation is on natural gas/n-alkanes, primary reference fuel (PRF) and toluene primary reference fuel (TPRF) mixtures. Due to the large size of C3MechV3.3, a mechanism processing tool was developed to abstract species and reactions to generate any particular surrogate fuel and multi- fuel mechanisms of smaller size which can be used for preliminary mechanism reduction.
2022
File in questo prodotto:
File Dimensione Formato  
PrataliMaffei_2022_C3MechV3.3.pdf

accesso aperto

Descrizione: articolo principale
: Publisher’s version
Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1202690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 8
social impact