Experiments and simulations are presented for the interaction of single bubbles rising in a viscous liquid against a horizontal cylinder (Ø = 4 mm) of varying wettability. The slide-off of small and the cutting of larger bubbles into two daughter bubbles observed in the experiment are reproduced by phase-field simulations. It is shown that in the entire process bubble and cylinder are separated by a liquid film, which eliminates any influence of cylinder wettability. Before the mother bubble splits, a thinning gas thread develops below the cylinder. The rupture of this gas thread can lead to a different number of satellite bubbles depending on the conditions.

Bubble Cutting by Cylinder - Elimination of Wettability Effects by a Separating Liquid Film

Schillaci A.;
2022

Abstract

Experiments and simulations are presented for the interaction of single bubbles rising in a viscous liquid against a horizontal cylinder (Ø = 4 mm) of varying wettability. The slide-off of small and the cutting of larger bubbles into two daughter bubbles observed in the experiment are reproduced by phase-field simulations. It is shown that in the entire process bubble and cylinder are separated by a liquid film, which eliminates any influence of cylinder wettability. Before the mother bubble splits, a thinning gas thread develops below the cylinder. The rupture of this gas thread can lead to a different number of satellite bubbles depending on the conditions.
Bubble columns
Bubble fragmentation
Multiphase flows
Phase-field method
File in questo prodotto:
File Dimensione Formato  
WANGS01-22.pdf

accesso aperto

Descrizione: Paper
: Publisher’s version
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1201794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact