A properly designed skip-connection convolutional autoencoder deep generator is able to capture the inner structure of shot gathers from subsampled seismic data without any pre-training procedure. The complete interpolated data can be reconstructed by feeding the autoencoder with multidimensional random noise and minimizing the mean squared error between generated and measured data. The performances achieved on synthetic and field data show the effectiveness of the proposed method.

A Deep Prior Convolutional Autoencoder for Seismic Data Interpolation

Kong, F.;Lipari, V.;Picetti, F.;Bestagini, P.;Tubaro, S.
2020-01-01

Abstract

A properly designed skip-connection convolutional autoencoder deep generator is able to capture the inner structure of shot gathers from subsampled seismic data without any pre-training procedure. The complete interpolated data can be reconstructed by feeding the autoencoder with multidimensional random noise and minimizing the mean squared error between generated and measured data. The performances achieved on synthetic and field data show the effectiveness of the proposed method.
2020
EAGE Annual Conference & Exhibition
File in questo prodotto:
File Dimensione Formato  
kong2020deep_eage.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1201550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact