We present an object-oriented optimization framework that can be employed to solve small- and large-scale problems based on the concept of vectors and operators. By using such a strategy, we implement different iterative optimization algorithms that can be used in combination with architecture-independent vectors and operators, allowing the minimization of single-machine or cluster-based problems with a unique codebase. We implement a Python library following the described structure with a user-friendly interface that is designed to seamlessly scale to high-performance-computing (HPC) environments. We demonstrate its flexibility and scalability on multiple inverse problems, where convex and non-convex objective functions are optimized with different iterative algorithms.
An object-oriented optimization framework for large-scale inverse problems
Picetti F.;
2021-01-01
Abstract
We present an object-oriented optimization framework that can be employed to solve small- and large-scale problems based on the concept of vectors and operators. By using such a strategy, we implement different iterative optimization algorithms that can be used in combination with architecture-independent vectors and operators, allowing the minimization of single-machine or cluster-based problems with a unique codebase. We implement a Python library following the described structure with a user-friendly interface that is designed to seamlessly scale to high-performance-computing (HPC) environments. We demonstrate its flexibility and scalability on multiple inverse problems, where convex and non-convex objective functions are optimized with different iterative algorithms.File | Dimensione | Formato | |
---|---|---|---|
biondi2021occamypy_cageo.pdf
Accesso riservato
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.