Recent efforts to decrease energy consumption and greenhouse gas emissions have resulted in sustainable, intelligent districts with energy-efficient buildings, distributed multi-energy generation systems, and alternative transportation approaches. However, there is usually slight or no coordination between the district planners and the distribution system operators. Most attention is paid to the district's annual load and generation without considering the electrical distribution network impacts. The paper presents an approach that embeds heating, cooling, several households, office appliance, and distributed generation load profiles to investigate the opportunity given by integrated planning and operation of new urban districts with distribution networks. The model has been applied to the decommissioned Farini railway yard in Milan, considering five scenarios with different electrical appliances, Combined Heat and Power (CHP) plants, and Photovoltaic (PV) systems. Several district load profiles are simulated and their influence on local distribution networks is investigated by considering different demand and distributed generators (DGs) production. Preliminary results show promising opportunities both for end-users and utilities.

Integrated distribution systems and energy districts planning and operation with DGs and EVs

Bosisio A.;Berizzi A.;
2021-01-01

Abstract

Recent efforts to decrease energy consumption and greenhouse gas emissions have resulted in sustainable, intelligent districts with energy-efficient buildings, distributed multi-energy generation systems, and alternative transportation approaches. However, there is usually slight or no coordination between the district planners and the distribution system operators. Most attention is paid to the district's annual load and generation without considering the electrical distribution network impacts. The paper presents an approach that embeds heating, cooling, several households, office appliance, and distributed generation load profiles to investigate the opportunity given by integrated planning and operation of new urban districts with distribution networks. The model has been applied to the decommissioned Farini railway yard in Milan, considering five scenarios with different electrical appliances, Combined Heat and Power (CHP) plants, and Photovoltaic (PV) systems. Several district load profiles are simulated and their influence on local distribution networks is investigated by considering different demand and distributed generators (DGs) production. Preliminary results show promising opportunities both for end-users and utilities.
2021
2021 AEIT International Annual Conference, AEIT 2021
978-88-87237-50-4
distributed power generation
district heating and cooling
energy consumption
energy districts
power distribution
File in questo prodotto:
File Dimensione Formato  
Integrated_distribution_systems_and_energy_districts_planning_and_operation_with_DGs_and_EVs.pdf

Accesso riservato

: Publisher’s version
Dimensione 510.4 kB
Formato Adobe PDF
510.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1198613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact