This research aims to utilize an output method for zero energy pop-up fabrication using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process starting from the manufacturing side whereby a rigid structural body is given its form, through to the user side, where the form potential of a soft structure is activated and the structure becomes complete. To demonstrate this technique, we created two use cases: firstly, a compression material for emergency response, and secondly a self-inflating packaging system. This paper provides details on the auto-inflation process as well as the corresponding digital tool for the design of pneumatic materials. The results show the efficiency of using zero energy auto-inflatable structures for both medical applications and packaging. This rapidly deployable inflatable kit starts from the assumption that every product can provide its own contribution by responding in the best way to a specific application.

Auto-inflatables: Chemical inflation for pop-up fabrication

Sumini V.;
2019-01-01

Abstract

This research aims to utilize an output method for zero energy pop-up fabrication using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process starting from the manufacturing side whereby a rigid structural body is given its form, through to the user side, where the form potential of a soft structure is activated and the structure becomes complete. To demonstrate this technique, we created two use cases: firstly, a compression material for emergency response, and secondly a self-inflating packaging system. This paper provides details on the auto-inflation process as well as the corresponding digital tool for the design of pneumatic materials. The results show the efficiency of using zero energy auto-inflatable structures for both medical applications and packaging. This rapidly deployable inflatable kit starts from the assumption that every product can provide its own contribution by responding in the best way to a specific application.
2019
Conference on Human Factors in Computing Systems - Proceedings
9781450359719
Chemical reaction
Computational design
Digital fabrication
Inflatable structure
Membrane
File in questo prodotto:
File Dimensione Formato  
LBW1411.pdf

accesso aperto

: Publisher’s version
Dimensione 9.51 MB
Formato Adobe PDF
9.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1198343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 0
social impact