In this article, we study the optimal control problem arising from the mean-field game formulation of the collective decision-making in honeybee swarms. A population of homogeneous players (the honeybees) has to reach consensus on one of two options. We consider three states: the first two represent the available options (or strategies), and the third one represents the uncommitted state. We formulate the continuous-time discrete-state mean-field game model. The contributions of this article are the following: 1) we propose an optimal control model where players have to control their transition rates to minimize a running cost and a terminal cost, in the presence of an adversarial disturbance; 2) we develop a formulation of the micro–macro model in the form of an initial-terminal value problem with switched dynamics; 3) we study the existence of stationary solutions and the mean-field Nash equilibrium for the resulting switched system; 4) we show that under certain assumptions on the parameters, the game may admit periodic solutions; and 5) we analyze the resulting microscopic dynamics in a structured environment where a finite number of players interact through a network topology.
Mean-Field Game for Collective Decision-Making in Honeybees via Switched Systems
P. Colaneri
2022-01-01
Abstract
In this article, we study the optimal control problem arising from the mean-field game formulation of the collective decision-making in honeybee swarms. A population of homogeneous players (the honeybees) has to reach consensus on one of two options. We consider three states: the first two represent the available options (or strategies), and the third one represents the uncommitted state. We formulate the continuous-time discrete-state mean-field game model. The contributions of this article are the following: 1) we propose an optimal control model where players have to control their transition rates to minimize a running cost and a terminal cost, in the presence of an adversarial disturbance; 2) we develop a formulation of the micro–macro model in the form of an initial-terminal value problem with switched dynamics; 3) we study the existence of stationary solutions and the mean-field Nash equilibrium for the resulting switched system; 4) we show that under certain assumptions on the parameters, the game may admit periodic solutions; and 5) we analyze the resulting microscopic dynamics in a structured environment where a finite number of players interact through a network topology.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mean-Field Game for Collective Decision-Making in Honeybees via Switched Systems.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
|
11311-1197899_Colaneri.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


