In this paper, the FEST-FOREST model is presented. A FOREST module is written in the FORTRAN-90 programming language, and was included in the FEST-WB distributed hydrological model delivering the FEST-FOREST model. FEST-FOREST is a process-based dynamic model allowing the simulation at daily basis of gross primary production (GPP) and net primary production (NPP) together with the carbon allocation of a homogeneous population of trees (same age, same species). The model was implemented based on different equations from literature, commonly used in Eco-hydrological models. This model was developed within the framework of the INNOMED project co-funded under the ERA-NET WaterWorks2015 Call of the European Commission. The aim behind the implementation of the model was to simulate in a simplified mode the forest growth under different climate change and management scenarios, together with the impact on the water balance at the catchment. On a first application of the model, the results are considered very promising when compared to field measured data.
Integration of forest growth component in the fest-wb distributed hydrological model: The bonis catchment case study
Feki M.;Ravazzani G.;Ceppi A.;
2021-01-01
Abstract
In this paper, the FEST-FOREST model is presented. A FOREST module is written in the FORTRAN-90 programming language, and was included in the FEST-WB distributed hydrological model delivering the FEST-FOREST model. FEST-FOREST is a process-based dynamic model allowing the simulation at daily basis of gross primary production (GPP) and net primary production (NPP) together with the carbon allocation of a homogeneous population of trees (same age, same species). The model was implemented based on different equations from literature, commonly used in Eco-hydrological models. This model was developed within the framework of the INNOMED project co-funded under the ERA-NET WaterWorks2015 Call of the European Commission. The aim behind the implementation of the model was to simulate in a simplified mode the forest growth under different climate change and management scenarios, together with the impact on the water balance at the catchment. On a first application of the model, the results are considered very promising when compared to field measured data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.